

Super High-speed 1T 8051 Core Flash MCU, 32 Kbytes Flash, 4 Kbytes SRAM, 1 Kbytes Independent LDROM, 23-channel dual-mode TouchKey module,12-bit High-speed 1M ADC, 16-bit PWM, 5 Timers, MDU, UART, 3×USCI, Smart Card, CRC Check Module

1 General Description

SC95F8523/8522/8521 (hereinafter referred to as the SC95F852X) is a series of enhanced 1T 8051 core industry-standard Flash Microcontroller unit (MCU) with integrated TouchKey function, the instruction set is compatible with the standard 80C51 series.

The SC95F852X has a Super-high-speed 1T 8051 CPU core with an operating frequency of up to 32MHz.

The SC95F852X integrates a hardware multiplier and divider and dual DPTR data pointers to accelerate data operations and movement speed. The hardware multiplier and divider does not occupy CPU cycles, and the operation is implemented by hardware, and the speed is dozens of times faster than the multiplication and division speed realized by software; dual DPTR data pointers can be used to accelerate data storage and movement.

The SC95F852X has high performance and reliability, with a wide operating voltage of 2.0V~5.5V, a super-wide operating temperature of -40°C to 105°C, and powerful 6KV ESD and 4KV EFT capabilities. Using the industry-leading eFlash process, the Flash can be writen more than 100,000 times stored for 100 years at room temperature.

The SC95F852X has a built-in low power consumption WDT Watchdog Timer. It has a 4-level selectable voltage LVR low voltage reset function and a system clock monitoring function. It has low power consumption capability in operation and power-down modes. Under normal operating mode: about 4.5mA@32M at 5V.

The SC95F852X series is also integrated with super rich hardware resources: multiple built-in 23-channel dual-mode (high sensitivity/high reliability) touch circuits, 32K bytes Flash ROM, 4K bytes SRAM, 1K bytes independent LDROM; up to 26 GP I/O, 13 IO can be externally interrupted, 5 16-bit timer, 11 channels 12-bit high-precision 1M high-speed ADC, 8-channel 16-bit dead zone complementary PWM, internal high-frequency 32/16/8/4MHz oscillator and low-frequency 32.768kHz oscillator, external 32.768kHz resources such as crystal oscillators, UART, SPI, TWI and other communication interface resources. The SC95F852X also integrates 11 channels 12-bit high-precision 1M high-speed ADC with 1.024V/2.048V reference voltage function. 1 UART, 3 USCI (UART/TWI/SPI). So many functions are integrated in the SC95F852X, which can reduce the number of peripheral components of the system and save board space and system cost.

The SC95F852X is very convenient for development and debugging, with ISP (In-System Programming), ICP (In-Circuit Programming) and IAP (In-Application Programming) . Allow the chip to debug and upgrade the program memory directly on the circuit board when the chip is online or powered.

The SC95F852X has very excellent anti-jamming performance, high reliability, large resources, multiple interfaces, low power consumption, high efficiency, etc. It is very suitable for Intelligent House System, industrial control, Internet of Things (IoT), medical, wearable devices, Consumer goods and other application areas.

Page 1 of 224 V1.0

Super High-speed 1T 8051 Core Flash MCU, 32 Kbytes Flash, 4 Kbytes SRAM, 1 Kbytes Independent LDROM, 23-channel dual-mode TouchKey module,12-bit High-speed 1M ADC, 16-bit PWM, 5 Timers, MDU, UART, 3×USCI, Smart Card, CRC Check Module

2 Features

Operating Conditions

Voltage Range: 2.0V~5.5V

Temperature Range: -40°C ~ +105°C

ESD&EFT

ESD 6KV

EFT 4KV

Package

28 PIN: SOP28 / TSSOP28

20 PIN: SOP28 / TSSOP28

16 PIN: SOP16

CPU

- Super-high-speed 1T 8051 core
- The instruction set compatible with 8051
- The execution speed is about twice that of other 1T 8051
- Double data pointers (DPTRs)

Storage

- 32K bytes Flash ROM
 - Divided into 64 sectors
 - 512 bytes per sector
 - Can be rewritten 100,000 times
 - The data written-in has more than 100-year preservation life in the ambient temperature of 25°C
- IAP (In Application Programming): The area allowed IAP operation in Flash can be set to 0K,1K,2K or 32K by Code Option.
- BootLoader: Built-in 1K bytes LDROM
 - Boot from APROM or LDROM can be selected through the Code Option Settings item

Page 2 of 224 V1.0

- Unique ID: 96 bit unique ID memory
- SRAM:
 - Internal 256 bytes of in-chip direct access RAM
 - 4 Kbytes of external RAM (XRAM)
 - 16 bytes Indirect access RAM in the chip read and write PWM duty cycle SFR: 1040H~104FH 16 bytes in total

Flash Programming and Emulation

• 2-wire JTAG programming and emulation interface

Clock Source

- Built-in high frequency 32MHz oscillator (HRC)
 - The system clock frequency (fsys) of the IC can be selected and set by the programmer as: 32/16/8/4MHz
 - Frequency Error:
 - ♦ Within ±1% @ -20 ~ 85°C
 - ♦ Within ±2% @ -40 ~ 105°C
 - The system clock can be automatically calibrated by 32.768kHz external crystal oscillator, after calibration HRC accuracy can be infinitely close to the accuracy of external 32.768kHz crystal oscillator.
- Built-in low-frequency crystal oscillator circuit: 32.768k oscillator can be connected externally as a Base Timer clock source.
- Built-in low-frequency 32.768kHz oscillator (LRC): used as the clock source for Base Timer and WDT.

Low-voltage Reset (LVR)

• 4 options of reset voltage: 4.3/3.7/ 2.9/1.9V, the default value can be selected by the Code Option

Interrupts (INT)

- Up to 16 interrupt sources including Timer0~Timer4, INT0~2, ADC, PWM, UART, USCI0~2, Base Timer, TK
- External interrupt INT0~2 contains 3 interrupt vectors, 13 intermediate fractures. All can set up rising edge, falling edge, double edge interrupt.
- Two-level interrupt priority capability

Digital Peripheral

- GPIO
 - Up to 26 bidirectional independently controllable I/O ports, independent setting of pull-up resistors

Page 3 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Each source drive capabiltiy of I/O has 4 levels of control

- All I/Os have large sink current drive capability (50mA)
- Built-in WDT, optional clock frequency division ratio
- 5 Timers: Timer0~4
- 8-channel 16-bit PWM
 - Can be set to independent mode or complementary mode: 8 channels of PWM share cycle and the duty cycle can be set separately in the independent mode
 - In complementary mode, four sets of complementary PWM waveforms with dead zones can be output simultaneously
 - The output waveform can be reversed and can be set to center-aligned or edge-aligned
 - Fault detection mechanism
- One independent UART communication port (UART0)
- Three UART/SPI/TWI communication interfaces (USCI)
 - USCI0 has 7816 mode
 - USCI0's SPI interface has a 16-bit 8-level read/write FIFO cache in the main mode
- Integrated with 16 * 16-bit hardware Multiplier-Divide Unit (MDU)
- Built-in CRC check module

Analog Peripheral

- 23-channel dual-mode TouchKey (TK) circuit.
 - High-sensitivity mode applicable to TouchKey sensor, proximity induction and other TouchKey applications featuring high requirements on sensitivity
 - High reliability mode features very strong anti-interference which is able to pass 10V dynamic CS test
 - Support low power consumption mode.
 - Complete development support: High-flexible touch software library, intelligent debugging software.
- 11-channel 12-bit high-speed ADC
 - 1MHz sampling clock
 - The ADC reference voltages is optional:
 - Internal 2.048V
 - Internal 1.024V
 - ◆ VDD

Page 4 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

■ The internal ADC can directly measure 1/4VDD voltage

Power Saving Mode

- IDLE Mode: can be woken up by any interrupt
- STOP Mode: can be woken up by INT0~2, Base Timer and TK.

Page 5 of 224 V1.0

Naming Rules for 95 Series Products

Name	SC	95	F	8	5	2	3	Х	М	28	U
S/R	1	2	3	4	(5)	6	7	8	9	110	(1)

S/R	Meaning
1	SinOne Chip abbreviation
2	Name of product series
3	Product Type (F: Flash MCU)
4	Serial Number: 7: GP Series, 8: TK series
5	ROM Size: 1 for 2K, 2 for 4K, 3 for 8K, 4 for 16K, 5 for 32K and 6 for 64K
6	Subseries Number.: 0 ~ 9, A ~ Z
Ī	Number of Pins: 0: 8pin, 1: 16pin,2: 20pin,3: 28pin,5: 32pin,6: 44pin,7: 48pin,8: 64pin,9: 100pin
8	Package Type: (D: DIP; M: SOP; X: TSSOP; F: QFP; P: LQFP; Q: QFN; K: SKDIP)
9	Number of Pins.
(10)	Number of Pins.
(11)	Packaging Mode: (U: Tube; R: Tray; T: Reel)

Page 6 of 224 V1.0

Ordering Information

PRODUCT ID	PACKAGE	PACK
SC95F8523M28U	SOP28	TUBE
SC95F8523X28U	TSSOP28	TUBE
SC95F8522M20U	SOP20	TUBE
SC95F8522X20U	TSSOP20	TUBE
SC95F8521M16U	SOP16	TUBE

Page 7 of 224 V1.0

Contents

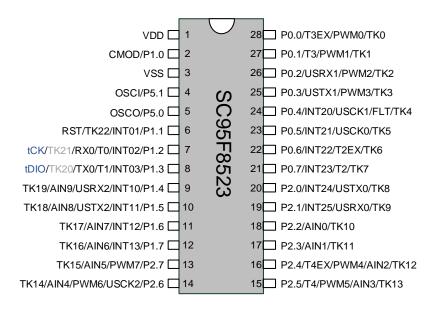
1 GENERAL DESCRIPTION	1
2 FEATURES	2
NAMING RULES FOR 95 SERIES PRODUCTS	6
ORDERING INFORMATION	7
CONTENTS	8
3 PIN DESCRIPTION	12
3.1 Pin Configuration	12
3.2 28/20/16 Pin Configuration	
4 INNER BLOCK DIAGRAM	
5 MEMORY ORGANIZATION	
5.1 Flash ROM	
5.1.1 Flash ROM Sectors	19
5.2 In Application Programming (IAP)	
5.2.1 IAP Operation Related Registers	20
5.3 BootLoader	29
5.3.1 BootLoader Mode operation related registers	29
5.4 Encryption	34
5.5 Unique ID (Unique ID) Area	34
5.5.1 Unique ID Read Operating Demo Program In C Language	35
5.6 Programming	36
5.7 Code Option Area (User Programming Settings)	38
5.7.1 Option-related Registers Operation Instructions	42
5.8 SRAM	43
5.8.1 Internal 256 Bytes SRAM	45
6 SPECIAL FUNCTION REGISTER (SFR)	47
6.1 SFR Mapping	
6.2 Register Summary	
7 POWER, RESET AND SYSTEM CLOCK	55
7.1 Power Circuit	
7.2 Power-on Reset	
7.2.1 Reset Stage	55 55
7.2.5 Normal Operation Stage	

Super High-Speed Low Power Consumption Flash MCU

7.3.1 External Reset	
7.3.2 Low-voltage Reset LVR	
7.3.3 Power-on Reset (POR)	
7.3.5 Software Reset	
7.3.6 Register Reset Value	60
7.4 High-speed RC Oscillator	60
7.5 Low-speed RC Oscillator and Low-speed Clock Timer	63
7.6 Power Saving Modes	
8 CPU AND INSTRUCTION SET	68
8.1 CPU	68
8.2 Addressing Mode	68
8.2.1 Immediate Addressing	
8.2.2 Direct Addressing	
8.2.3 Indirect Addressing	
8.2.5 Relative Addressing	
8.2.6 Indexed Addressing	
8.2.7 Bits Addressing	69
8.3 Introduction of Common Special Function Registers of 8051 Core	
Program Counter PC	69
Accumulator ACC (E0H)	
B Register (F0H)	
Stack Pointer SP (81H)	
9 INTERRUPTS	74
9.1 Interrupt Source and Vector	74
9.2 Interrupt Structure Diagram	77
9.3 Interrupt Priority	78
9.4 Interrupt Processing Flow	78
9.5 Interrupt-related SFR Registers	78
10 TIMER/COUNTER TO AND T1	90
10.1 T0 and T1-related Registers	90
10.2 T0 Operating Modes	95
10.3 T1 Operating Mode	97
11 TIMER/COUNTER T2/T3/T4	99
11.1 T2/3/4-related Registers	99
11.2 Timer2	100
11.3 Timer3	104
11.4 Timer4	108
11.5 T2/3/4 Operating Modes	111
11.5.1 Operating Mode 0: 16-bit Capture	
11.5.2 Operating Mode 1: 16-bit Auto-Reload Timer	113

Super High-Speed Low Power Consumption Flash MCU

114
115
117
120
121
122
129
131
131
134
134
136
137
139
139
141
149
151
152
155
155
162
168
174
174 177
177
179
180
184
184
184
188
188
190 190
190
192
193

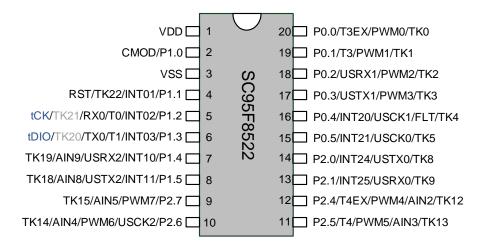

Super High-Speed Low Power Consumption Flash MCU

18.1 ADC-Related Registers	193
18.2 ADC Conversion Steps	199
19 DUAL MODE TOUCH CIRCUIT	200
19.1 Power Consumption Mode of Touch circuit	200
19.2 Touch Mode	200
20 CRC MODULE	202
20.1 CRC Check Operation Related Registers	203
21 ELECTRICAL CHARACTERISTICS	
21.1 Absolute Maximum Ratings	209
21.2 Recommended Operating Conditions	209
21.3 Flash ROM Characteristics	210
21.4 LVR Characteristics	210
21.5 DC Characteristics	211
21.6 AC Characteristics	215
21.7 ADC Characteristics	215
22 APPLICATION CIRCUIT	218
23 PACKAGE INFORMATION	219
24 REVISION HISTORY	224

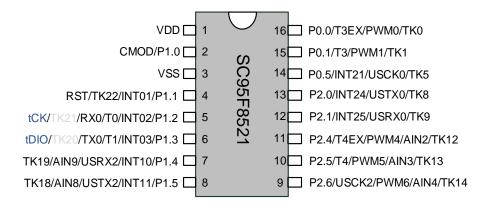
3 Pin Description

3.1 Pin Configuration

Note: In consideration of multiplexing of TK20/TK21 and TK debugging communication ports of the SC95F852X, if it is required to use the TK debugging function, please avoid using TK20/TK21!



SC95F8523 Pin Diagram


Page 12 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

SC95F8522Pin Diagram

SC95F8521Pin Diagram

Page 13 of 224 V1.0

3.2 28/20/16 Pin Configuration

Pin nur	Pin number		Pin Name	Tyma	Description
28PIN	20PIN	16PIN	Pin Name	Туре	Description
1	1	1	VDD	Power	Power
2	2	2	P1.0/CMOD	I/O	P1.0: GPIO P1.0
					CMOD: Touch Key External Capacitance
3	3	3	vss	Power	Ground
4	-	-	P5.1/OSCI	I/O	P5.1: GPIO P5.1
					OSCI: External crystal oscillator input
5	-	-	P5.0/OSCO	I/O	P5.0: GPIO P5.0
					OSCO: External crystal oscillator output
6	4	4	P1.1/INT01/TK22/RST	I/O	P1.1: GPIO P 1.1
					INT01: Input 1 of external interrupt 0
					TK22: TK Channel 22 RST: Reset Pin
	_	_			
7	5	5	P1.2/INT02/T0/RX0/TK21/tCK	I/O	P1.2: GPIO P1.2
					INT02: Input 2 of external interrupt 0 T0: Timer/Counter 0 External Input
					RX0: UART0 Receiver
					TK21: TK channel 21, if it is required to use the TK debugging function, please avoid using TK21
					tCK: Programming and Emulation Clock Pin
8	6	6	P1.3/INT03/T1/TX0/TK20/tDIO	I/O	P1.3: GPIO P1.3
					INT03: Input 3 of external interrupt 0
					T1: Timer/Counter 1 External Input
					TX0: UART 0 Transmitter
					TK20: TK channel 20, if it is required to use the TK debugging function, please avoid using TK20
					tDIO: Programming and Emulation Data Pin
9	7	7	P1.4/INT10/USRX2/AIN9/TK19	I/O	P1.4: GPIO P1.4

Page 14 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

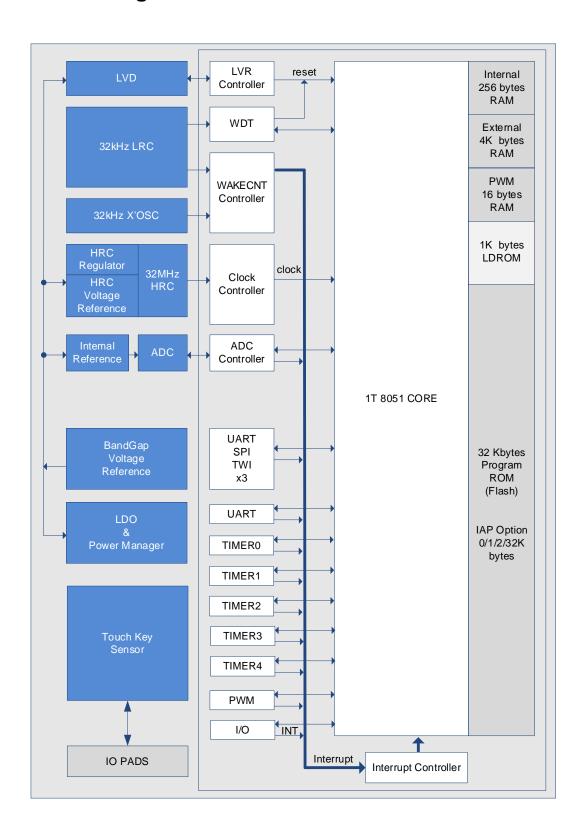
					INT10: Input 0 of external interrupt 1 USRX2: USCI2 MISO/RX AIN9: ADC Input Channel 9 TK19: TK Channel 19
10	8	8	P1.5/INT11/USTX2/AIN8/TK18	I/O	P1.5: GPIO P1. 5 INT11: Input 1 of external interrupt 1 USTX2: USCI2 MOSI/SDA/TX AIN8: ADC Input Channel 8 TK18: TK Channel 18
11	-	-	P1.6/INT12/AIN7/TK17	I/O	P1.6: GPIO P1.6 INT12: Input 2 of external interrupt 1 AIN7: ADC Input Channel 7 TK17: TK Channel 17
12	-	-	P1.7/INT13/AIN6/TK16	I/O	P1.7: GPIO P1.7 INT13: Input 3 of external interrupt 1 AIN6: ADC Input Channel 6 TK16: TK Channel 16
13	9	-	P2.7/PWM7/AIN5/TK15	I/O	P2.7: GPIO P2.7 PWM7: PWM7 Output AIN5: ADC Input Channel 5 TK15: TK Channel 15
14	10	9	P2.6/USCK2/PWM6/AIN4/TK14	I/O	P2.6: GPIO P2.6 USCK2: USCI2 SCK PWM6: PWM6 Output AIN4: ADC Input Channel 4 TK14: TK Channel 14
15	11	10	P2.5/T4/PWM5/AIN3/TK13	I/O	P2.5: GPIO P2.5 T4: Timer 4 external input PWM5: PWM5 Output AIN3: ADC Input Channel 3 TK13: TK Channel 13
16	12	11	P2.4/T4EX/PWM4/AIN2/TK12	I/O	P2.4: GPIO P2.4 T4EX: Timer 4 External capture signal input PWM4: PWM4 Output AIN2: ADC Input Channel 2

Page 15 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

					TK12: TK Channel 12
17	-	-	P2.3/AIN1/TK11	I/O	P2.3: GPIO P 2.3 AIN1: ADC Input Channel 1 TK11: TK Channel 11
18	-	-	P2.2/AIN0/TK10	I/O	P2.2: GPIO P2.2 AIN0: ADC Input Channel 0 TK10: TK Channel 10
19	13	12	P2.1/INT25/MISO/RX1/TK9	I/O	P2.1: GPIO P2.1 INT25: Input 5 of external interrupt 2 USRX0: USCI0 MISO/RX TK9: TK Channel 9
20	14	13	P2.0/INT24/USTX0/TK8	I/O	P2.0: GPIO P2.0 INT24: Input 4 of external interrupt 2 USTX0: USCI0 MOSI/SDA/TX/SC_DAT TK8: TK Channel 8
21	-	-	P0.7/INT23/T2/TK7	I/O	P0.7: GPIO P 0.7 INT23: Input 3 of external interrupt 2 T2: Timer/Counter 2 External input TK7: TK Channel 7
22	-	-	P0.6/INT22/T2EX/TK6	I/O	P0.6: GPIO P0.6 INT22: Input 2 of external interrupt 2 T2EX: External Signal Input Capture for Timer2 TK6: TK Channel 6
23	15	14	P0.5/INT21/USCK0/TK5	I/O	P0.5: GPIO P0.5 INT21: Input 1 of external interrupt 2 USCK0: USCI0 SCK/SC_CLK TK5: TK Channel 5
24	16	-	P0.4/INT20/USCK1/FLT/TK4	I/O	P0.4: GPIO P0.4 INT20: Input 0 of external interrupt 2 USCK1: USCI1 SCK FLT: PWM fault detection input pin
					TK4: TK Channel 4

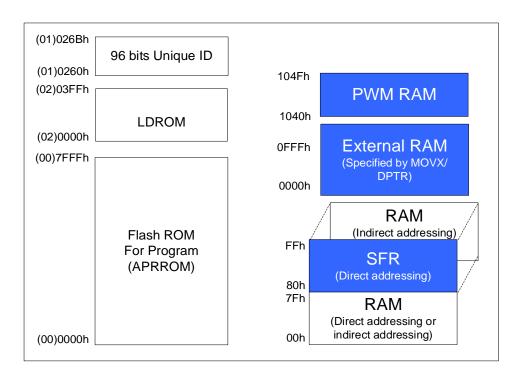
Page 16 of 224 V1.0


Super High-Speed Low Power Consumption Flash MCU

					USTX1: USCI1 MOSI/SDA/TX PWM3: PWM3 output TK3: TK Channel 3
26	18	-	P0.2/USRX1/PWM2/TK2	I/O	P0.2: GPIO P0.2 USRX1: USCI1 MISO/RX PWM2: PWM2 output TK2: TK Channel 2
27	19	15	P0.1/T3/PWM1/TK1	I/O	P0.1: GPIO P0.1 T3: Timer 3 external input PWM1: PWM1 output TK1: TK Channel 1
28	20	16	P0.0/T3EX/PWM0/TK0	I/O	P0.0: GPIO P0.0 T3EX: Timer 3 External capture signal input PWM0: PWM0 output TK0: TK Channel 0

Page 17 of 224 V1.0

4 Inner Block Diagram



SC95F852X BLOCK DIAGRAM

Page 18 of 224 V1.0

5 Memory Organization

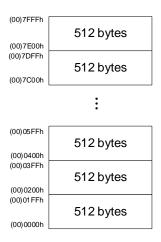
The structure of the SC95F852X's Flash ROM and SRAM are shown as follows:

Flash ROM and SRAM structure diagram

5.1 Flash ROM

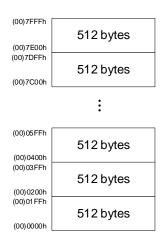
The SC95F852X has 32.768K bytes of Flash ROM, the address is $(00)0000H \sim (00)7FFFH$, "00" in brackets is the extended address, which is set by the IAPADE register. Flash ROM can be programmed and erased by SC LINK provided by SinOne. The characteristics of this 32.768K bytes Flash ROM are as follows:

- 1 Divided into 64 sectors
- 2 512 bytes per sector
- (3) Can be rewritten 100,000 times
- ④ The data written-in has more than 100-year preservation life in the ambient temperature of 25°C
- (5) In ICP mode, BLANK, PROGRAM, VERIFY, ERASE and READ functions are supported. The READ function is only valid for ICs with no security encryption function enabled
- 6 Secure Encryption: Optionally enable APROM (32.768K bytes Flash ROM) and LDROM secure encryption
- (7) Support IAP (In Application Programming).


5.1.1 Flash ROM Sectors

Page 19 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU


The SC95F852X has 32.768K bytes of Flash ROM divided into 64 sectors, each sector is 512 bytes, the sector to which the target address belongs will be forcibly erased by the programmer during writing, and then write data; When the user writes, must erasing it before writing.

SC95F852X 32K bytes Flash ROM Sectors

5.2 In Application Programming (IAP)

The 32.768K bytes Flash ROM can be set to 0K, 1K, 2K, or 32K through the Code Option Settings. Flash ROM is divided into 64 sectors from (00)0000H to (00)7FFFH. The "00" in brackets is the expanded address set by the IAPADE register:

SC95F852X 32K bytes Flash ROM Sectors

Note: During the IAP operation, the program counter will holded until the operation is completed.

5.2.1 IAP Operation Related Registers

Page 20 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

OP_CTM1 (C2H@FFH) Code Option Register 1(Read/write)

Bit number	7	6	5	4	3	2	1	0
Bit VREFS Mnemonic		S[1: 0]	-	DISJTG	IAPS[1: 0]		OP_BL	
R/W	R/W	R/W	-	R/W	R/W R/W		R/W	R/W
POR	n	n	х	n	n	n	n	n

Bit Number	Bit Mnemonic	Description
3~2	IAPS[1: 0]	IAP spatial range selection
		00: Last 0K Flash ROM allows IAP operation
		01: Last 1K Flash ROM allows IAP operation
		10: Last 2K Flash ROM allows IAP operation
		11: Full Flash ROM allows IAP operation
		Note: The above setting items are invalid in BootLoader mode. The BootLoader program can perform IAP operation on the entire Flash ROM area.

IAP Operation Related Register Description:

Symbol	Address	Description	7	6	5	4	3	2	1	0	POR
IAPKEY	F1H	Data protection register		IAPKEY[7: 0]							00000000b
IAPADL	F2H	IAP write address low register		IAPADR[7: 0]							
IAPADH	F3H	IAP write address high register		IAPADR[15: 8]						00000000b	

Page 21 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

IAPADE		IAP write to extended address register		IAPADER[7: 0]						00000000b
IAPDAT	F5H	IAP data register		IAPDAT[7: 0]						
IAPCTL	F6H	IAP control register	- ERAS SERAS PRG - BTLD CMD[1: 0]					x000x000b		

IAPKEY (F1H) Data Protection Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0				
Bit Mnemonic		IAPKEY[7: 0]										
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W										
POR	0	0	0	0	0	0	0	0				

Bit Number	Bit Mnemonic	Description
7~0	IAPKEY[7: 0]	Open IAP function and operation time limit setting Write a value n greater than or equal to 0x40, which represents: 1 Enable the IAP function; 2 If no IAP write command is received after n system clocks, the
		IAP function is turned off again.

IAPADL (F2H) IAP Write Address Low Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPAD	R[7: 0]			

Page 22 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

| R/W |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Bit Number	Bit Mnemonic	Description
7~0	IAPADR[7: 0]	IAP writes the low 8 bits of the address

IAPADH (F3H) IAP Write Address High Register (read/write)

Bit number	7	6	5	4	3	2	1	0				
Bit Mnemonic		IAPADR[15: 8]										
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W										
POR	0	0	0	0	0	0	0	0				

Bit Number	Bit Mnemonic	Description
7~0	IAPADR[15: 8]	IAP writes the high 8 bits of the address

IAPADE (F4H) IAP Write to Extended Address Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPADE	ER[7: 0]			

Page 23 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

| R/W |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Bit Number	Bit Mnemonic	Description
7~0	IAPADER[7: 0]	IAP extended address: 0x00: Both MOVC and IAP are for Flash ROM 0x01: The read operation is performed on the Unique ID area, and the erase/write operation is not allowed, otherwise it may cause an exception! Other: reserved

IAPDAT (F5H) IAP Data Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	IAPDAT[7: 0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPDAT	Data written by IAP

IAPCTL (F6H) IAP Control register (Read/Write)

Page 24 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	ERASE	SERASE	PRG	-	BTLD	CMD	[1: 0]
R/W	-	R/W	R/W	R/W	-	R/W	R/W	R/W
POR	х	0	0	0	х	0	0	0

Bit number	Bit Mnemonic	Description
5	SERASE	Sector Erase(Sector Erase)control bit 0: No operation 1: Set CMD[1: 0]=10 after setting "1", then enter the Flash ROM sector erase operation, the specified sector of Flash ROM will be erased
2	PRG BTLD	Program control bits 0: No operation 1: Set CMD[1: 0]=10 after setting "1", then enter the Flash ROM write operation, and the data in the IADPDA register will be written to the specified Flash ROM address BootLoader control bit
		O: The program starts to run from the main program area (main program) after Reset; 1: The program starts to run from the BootLoader area after Reset
1~0	CMD[1: 0]	IAP Command enable control bit 10: Perform write or sector erase operation commands Others: reserved Note: 1. After SERASE / PRG set to "1", CMD[1: 0]=10 must be configured, the corresponding operation will start to execute

Page 25 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		 Only one IAP operation can be performed at a time, so ERASE / SERASE / PRG can only have one bit set 1 at the same time Be sure to add at least 8 NOP instructions after the IAP operation statement to ensure that the subsequent instructions can be executed normally after the IAP operation is completed
7,3	-	reserve

5.2.2 IAP Operating Demo Program In C Language

The header files shared by the following routines are as follows:

```
#include "intrins.h"
unsigned int IAP_Add;
unsigned char IAP_Data;
unsigned char code * POINT =0x0000;
```

IAP Operation: Sector erase:

nop();

```
EA = 0;
                   //Close global interrupt
IAPADE = 0x00; //Expand address is 0x00, select Flash ROM
IAPADH = (unsigned char)((IAP_Add >> 8)); // Write the high-bit value of the IAP target address
IAPADL = (unsigned char)IAP_Add; // Write the low-bit value of the IAP target address
IAPKEY = 0xF0;
IAPCTL = 0x20;
                   // Set sector erase bit
IAPCTL = 0x02;
                   // Block erase
_nop_(); // Wait (at least 8 _nop_() required)
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
```

Page 26 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

```
_nop_();
    _nop_();
    EA = 1;
                        // Open global interrupt
IAP operation: Write data:
    EA = 0;
                        // Close global interrupt
    IAPADE = 0X00:
                                                 // Extended address is 0x00, choose Flash ROM
    IAPDAT = IAP Data;
                                                 // Send data to IAP data register
    IAPADH = (unsigned char)((IAP_Add >> 8)); // Write the high-bit value of the IAP target address
    IAPADL = (unsigned char)IAP_Add;
                                                 // Write the low-bit value of the IAP target address
    IAPKEY = 0xF0; // This value can be adjusted according to the actual situation; it is
                            necessary to ensure that after this instruction is executed and before
                            the IAPCTL is assigned,
                           // The time interval needs to be less than 240 (0xF0) system clocks, otherwise
                           the IAP is disabled;
                           // Pay special attention when opening interrupt
    IAPCTL = 0X10;
                         // Set the IAP write operation bit.
    IAPCTL = 0X02;
                         // Execute write instruction
                         // Wait (at least 8 _nop_() required)
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    EA = 1;
                        // Open global interrupt
IAP operation: read data:
    EA = 0;
                        // Close global interrupt
    IAPADE = 0X00;
                                        //The extended address is 0x00, selectFlash ROM
```

Page 27 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

 $IAP_Data = *(POINT+IAP_Add); //Read the value of IAP_Add toIAP_Data$

EA = 1; // Open global interrupt

IAP Operation notes: The user must erase the target sector before writing.

Page 28 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

5.3 BootLoader

The LDROM is used to store the bootLoader code. The LDROM range is (02)0000H ~ (02)03FFH, the "02" In brackets is the extended address, which is set by the IAPADE register. LDROM supports blank checking (BLANK), programming (PROGRAM), verifying (VERIFY), erasing (ERASE) and reading (READ) functions in ICP mode. The user must erase the target sector before writing LDROM. One sector is 512 bytes, and the LDROM is divided into 2 sectors:

(02)03FFh	5401 1
(02)0200h	512 bytes
(02)01FFh	
	512 bytes
(02)0000h	

SC95F852X 1K bytes LDROM Sector

5.3.1 BootLoader Mode operation related registers

OP_CTM1 (C2H@FFH) Code Option Register 1(Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	VREF	S[1:0]	-	DISJTG	IAPS	[1:0]	OP.	_BL
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	n	n	х	n	n	n	n	n

Bit number	Bit Mnemonic	Description
1~0	OP_BL [1: 0]	10: After the chip is reset, it enters the LDROM Other: After the chip is reset, it enters the APROM

IAPKEY (F1H) Data Protection Register (Read/Write)

Bit number 7 6	5	4	3	2	1	0
----------------	---	---	---	---	---	---

Page 29 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	IAPKEY[7: 0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPKEY[7: 0]	Open IAP and operation time limit setting Write a value n greater than or equal to 0x40, which represents: 1 Enable the IAP; 2 If no IAP write command is received after n system clocks, the IAP is turned off again.

IAPADL (F2H) IAP Write Low Address Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPAD	R[7: 0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPADR[7: 0]	IAP writes the low 8 bits of the address

Page 30 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

IAPADH (F3H) IAP Write High Address Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPADI	R[15: 8]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPADR[15: 8]	IAP writes the upper 8 bits of the address

IAPADE (F4H) IAP Write to Extended Address Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPADI	ER[7: 0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPADER[7: 0]	IAP extended address: 0x00: Both MOVC and IAP are for Flash ROM 0x01: The read operation is performed on the Unique ID area, and the erase/write operation is not allowed, otherwise it may cause an exception! Other: reserved

Page 31 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

IAPDAT (F5H) IAP Data Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPDA	λT[7: 0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPDAT	Data written by IAP

IAPCTL (F6H) IAP Control Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	ERASE	SERASE	PRG	-	BTLD	СМ	D[1: 0]
R/W	-	R/W	R/W	R/W	-	R/W	R/W	R/W
POR	х	0	0	0	х	0	0	0

Bit number	Bit Mnemonic	Description				
6	ERASE	All Erase control bit				
		0: No operation				
		1: Set CMD[1: 0]=10 after setting "1", then enter the Flash ROM erase operation, 32K Flash ROM will erase all				

Page 32 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

5	SERASE	Sector Erase control bit					
		0: No operation					
		1: Set CMD[1: 0]=10 after setting "1", then enter the Flash ROM sector erase operation, the specified sector of the Flash ROM will be erased					
4	PRG	Program control bit					
		0: No operation					
		1: Set CMD[1: 0]=10 after setting "1", then enter the Flash ROM write operation, and the data in the IADPDA register will be written to the specified Flash ROM address					
2	BTLD	BootLoader control bit					
		0: The program starts to run from the APROM after Reset;					
		1: The program starts to run from the LDROM area after Reset					
1~0	CMD[1: 0]	IAP command enable control bit					
		10: execute write or sector erase operation command					
		Others: reserved					
		Note:					
		After ERASE / SERASE / PRG is set to "1", CMD[1: 0]=10 must be configured, and then the corresponding operation will start					
		Only one IAP operation can be performed at a time, so the ERASE / SERASE / PRG can only have one bit set 1 at the same time.					
		Be sure to add at least 8 NOP instructions after the IAP operation statement to ensure that the subsequent instructions can be executed normally after the IAP operation is completed					

PCON (87h) Power Management Control Register (write only, *not readable*)

Bit nu	mber	7	6	5	4	3	2	1	0
--------	------	---	---	---	---	---	---	---	---

Page 33 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	-	-	-	-	RST	-	STOP	IDL
R/W	-	-	-	-	write only	-	write only	write only
POR	х	х	х	х	n	х	0	0

Bit number	Bit Mnemonic	Description	
3	RST	Software reset control bit:	
		Write status:	
		0: The program runs normally;	
		1: The CPU resets immediately after this bit is written to "1"	

Bootloader Notes:

- 1. The user must erase the target sector before writing LDROM;
- 2. For the specific operation method, please refer to the description document "SinOne SC95F Series BootLoader Function Implementation Application Guide" provided by SinOne.

5.4 Encryption

Users can choose whether to encrypt the SC95F852X's ROM through the settings on the computer program:

- If the encryption function is disabled, users can read the last data written in APROM and LDROM by SC LINK:
- 2. If the encryption function is enabled, the data written in APROM (32 Kbytes Flash ROM) and LDROM will never be read from outsid. It is recommended to enable the encryption function during mass production;
- The only way to release security encryption is to re-programming
- 4. The encryption has no effect on iap read and write operation
- 5. For the specific operation method, please refer to the chapter of Secure Encryption and Reading in the "SinOne Development and Mass Production Tool User Manual".

5.5 Unique ID (Unique ID) Area

Page 34 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

The SC95F852X provides an independent Unique ID area. A 96-bit unique code can be pre-programmed before leaving the factory to ensure the uniqueness of the chip. The only way for the user to obtain the serial number is to read the relative address (01)0260H~(01)026BH through the IAP instruction. The Unique ID range is (01)0260H~(01)026BH, the "01" in brackets indicates the extended address which is set by the IAPADE register. The specific operation method is as follows:

IAPADE (F4H) IAP Write to extended address register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				IAPADE	ER[7: 0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	IAPADER[7: 0]	IAP Extended address:
		0x00: Both MOVC and IAP are for Flash ROM
		0x01: For the unique ID area, read and write operations are not allowed, otherwise it may cause an exception!
		Other: reserved

5.5.1 Unique ID Read Operating Demo Program In C Language

#include "intrins.h"

unsigned char UniqueID [12];//store UniqueID

unsigned char code * POINT =0x0260;

unsigned char i;

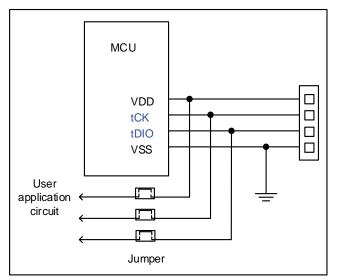
EA = 0; // Disable the global interrupt

IAPADE = 0X01; // Expand address 0x01, select Unique ID area

Page 35 of 224 V1.0


```
for(i=0;i<12;i++)

{
        UniqueID [i]= *( POINT+i);  // Read the value of UniqueID


}

IAPADE = 0X00;  // Expand address 0x00, return to Code area

EA = 1;  // Enable global interrupt
```

5.6 Programming

The SC95F852X's Flash ROM and 1K bytes LDROM can be programmed through tDIO, tCK, VDD, VSS, the specific connection relationship is as follows:

ICP mode Flash Writer programming connection diagram

tDIO、tCK is a 2-wire JTAG programming and emulation signal line. Users can configure the mode of these two ports through the Customer Option when programming:

JTAG Specific Mode:

tDIO、tCK are specific port for programming and emulation, and other functions multiplexed with it are not available. This mode is generally used in the online debugging stage, which is convenient for users to simulate and debug. After the JTAG special mode takes effect, the chip can directly enter the programming or emulation mode without powering on and off again.

Normal Mode (JTAG specific port is invalid):

Page 36 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

The JTAG function is not available, and other functions multiplexed with it can be used normally. This mode can prevent the programming port from occupying the MCU pins, which is convenient for users to maximize the use of MCU resources.

Note: When the invalid configuration setting of the JTAG dedicated port is successful, the chip must be completely powered off and then on again to enter the programming or emulation mode, which will affect the programming and emulation in the live mode. SinOne recommends that users select the invalid configuration of the JTAG dedicated port during mass production and programming, and select the JTAG mode during the development and debugging phase.

JTAG mode configuration register:

OP_CTM1 (C2H@FFH) Code Option register1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	VREFS[1: 0]		-	DISJTG	IAPS[1: 0]		OP_BL	
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	n	n	х	n	n	n	n	n

Bit number	Bit Mnemonic	Description
4	DISJTG	IO/JTAG port switching control 0: JTAG mode is enabled, P1.2 and P1.3 can only be used as tCK/tDIO. Recommended settings during R&D and commissioning 1: Normal mode (Normal), JTAG function is invalid. The recommended setting for the mass production burning stage.

Page 37 of 224 V1.0

5.7 Code Option Area (User Programming Settings)

There is a separate Flash area inside the SC95F852X to save the customer's initial settings. This area is called Customer Option area. The user writes this part of the code inside the IC when programming the IC. When the IC is reset and initialized, it will transfer this setting to SFR as the initial setting.

Option related SFR operation instructions:

The read and write operations of Option-related SFRs are controlled by OPINX and OPREG registers. The specific location of each Option SFR is determined by OPINX, as shown in the following table:

Symbol	Address	Instructions	7	6	5	4	3	2	1	0
OP_HRC R	83H@FF H	System clock change register	·		OP_HRCR[7: 0]					
OP_CTM 0	C1H@FF H	Customer Option register 0	ENW DT	ENX TL	SCLK	S[1: 0]	DISR ST	DISL VR	LVRS	5[1: 0]
OP_CTM 1	C2H@FF H	Customer Option register 1	VREF	S[1: 0]	-	DISJ TG	IAPS	[1: 0]	OP.	_BL

OP_HRCR (83H@FFH) System Clock Change Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic		OP_HRCR[7: 0]						
R/W		R/W						
POR	n	n	n	n	n	n	n	n

Bit number	Bit Mnemonic	Description
7~0	OP_HRCR[7: 0]	HRC frequency change register

Page 38 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

User can change the high-frequency oscillator frequency fhrc by modifying the value of this register, and then change the system clock frequency fsys:

- The initial value of OP_HRCR[7: 0] after power-on OP_HRCR[s] is a fixed value to ensure that f_{HRC} is 32MHz, OP_HRCR[s] of each IC may be different
- 2. When the initial value is OP_HRCR[s], the system clock frequency fsys of the IC can be set to an accurate 32/16/8/4MHz through the Option item. When OP_HRCR [7: 0] changes by 1, the fsys frequency changes by about 0.18%

The relationship between OP_HRCR [7: 0] and fsys output frequency is as follows:

	T
OP_HRCR [7: 0] Value	fsys actual output frequency (32M as an example)
OP_HRCR [s]-n	32000*(1-0.18%*n)kHz
OP_HRCR [s]-2	32000*(1-0.18%*2) = 31 884.8kHz
OP_HRCR [s]-1	32000*(1-0.18%*1) = 31 942.4kHz
OP_HRCR [s]	32000kHz
OP_HRCR [s]+1	32000*(1+0.18%*1) = 32 057.6kHz
OP_HRCR [s]+2	32000*(1+0.18%*2) = 32 115.2kHz
OP_HRCR [s]+n	32000*(1+0.18%*n)kHz

Note:

1. The value of OP_HRCR[7: 0] after each power-on of the IC is the value of the high-frequency oscillator frequency fhrc closest to 32MHz; the user corrects the value of HRC after each power-on to

Page 39 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

allow the system clock frequency fsys of the IC to work at the user Required frequency
In order to ensure the reliable operation of the IC, the maximum operating frequency of the IC should not exceed 10% of 32MHz, that is 35.2MHz;
3. Please confirm that the change of HRC frequency will not affect other functions.

OP_CTM0 (C1H@FFH) Code Option Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENWDT	ENXTL	SCLKS[1: 0]		DISRST	DISLVR	LVRS[1: 0]	
R/W	R/W	R/W	R/W		R/W	R/W	R/W	
POR	n	n	n		n	n	n	1

Bit number	Bit Mnemonic	Description
7	ENWDT	Watchdog (WDT) control bit (This bit is transferred by the system to the value set by the user Code Option) 0: WDT invalid 1: WDT valid (WDT stops counting during IAP execution)
6	ENXTL	External High-Frequency crystal oscillator selection bit 0: External 32.768kHz crystal Interface disable, P5.0 and P5.1 valid 1: External 32.768kHz crystal Interface enable, P5.0 and P5.1 invalid
5~4	SCLKS[1: 0]	System clock frequency selection bits 00: System clock frequency is HRC frequency divided by 1; 01: System clock frequency is HRC frequency divided by 2;

Page 40 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		10: System clock frequency is HRC frequency divided by 4; 11: System clock frequency is HRC frequency divided by 8;
3	DISRST	IO/RST selection bit 0: configure P1.1 as External Reset input pin 1: configure P1.1 as GPIO
2	DISLVR	LVR control bit 0: LVR valid 1: LVR invalid
1~0	LVRS [1: 0]	LVR voltage selection control 11: 4.3V reset 10: 3.7V reset 01: 2.9V reset 00: 1.9V reset

OP_CTM1 (C2H@FFH) Code Option Register 1(read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	VREFS[1: 0]		1	DISJTG	IAPS[1: 0]		OP_BL	
R/W	R/W	R/W	1	R/W	R/W	R/W	R/W	R/W
POR	n	n	х	n	n	n	n	n

Bit number	Bit Mnemonic	Description
------------	--------------	-------------

Page 41 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

7~6	VREFS[1: 0]	Reference voltage selection (initial value are configured by the user and loaded from Code Options)
		00: Configure ADC VREF as VDD;
		01: Configure ADC VREF as internal 2.048V;
		10: Configure ADC VREF as internal 1.024V;
		11: reserved
4	DISJTG	IO/JTAG Port switching control
		0: JTAG mode is enabled, P1.2 and P1.3 can only be used as tCK/tDIO.
		1: Normal mode (Normal), JTAG function is invalid.
3~2	IAPS[1: 0]	IAP spatial range selection
		00: The last 0K Flash ROM allows IAP operation
		01: Last 1K Flash ROM allows IAP operation
		10: Last 2K Flash ROM allows IAP operation
		11: All Flash ROM allows IAP operation
1~0	OP_BL [1:0]	10: Enter LDROM after chip reset

5.7.1 Option-related Registers Operation Instructions

Option-related SFRs reading and writing operations are controlled by both OPINX and OPREG registers, with their respective position of Option SFR depending on OPINX and its value written to option-related SFR depending on register OPREG:

Symbol	Address	Instructions		POR
OPINX	FEH	Option pointer	OPINX[7: 0]	0000000b
OPREG	FFH	Option register	OPREG[7: 0]	nnnnnnnb

The OPINX register stores the address of the related OPTION register when operating the Option related SFR, and the OPREG register stores the corresponding value.

For example: To set ENWDT (OP CTM0.7) to 1, the specific operation method is as follows:

Page 42 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

C language example:

OPINX = 0xC1; // Write the address of OP_CTM0 to the OPINX register

OPREG \mid = 0x80; // Set 1 for OP_CTM0.7

Assembly language example:

MOV OPINX,#C1H ; Write the address of OP_CTM0 to the OPINX register

ORL OPREG,#80H ; Set 1 for OP_CTM0.7

Note: It is forbidden to write any value beyond SFR address of Customer Option region into OPINX register! Or else, it may cause abnormal system operation.

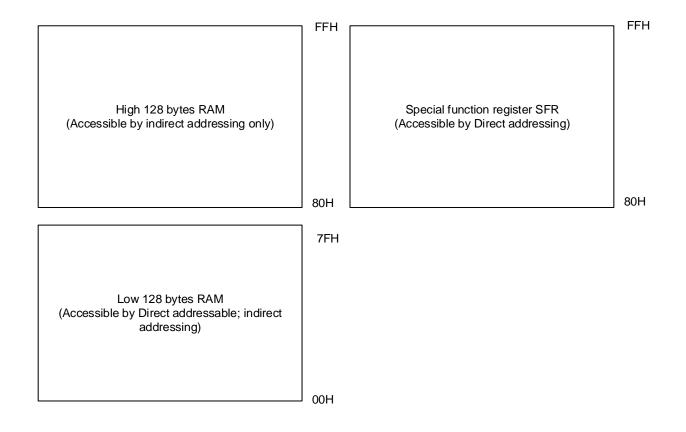
5.8 SRAM

The SRAM of the SC95F852X MCU is divided into internal 256 bytes RAM, external 4096 bytes RAM and 16 bytes PWM RAM. The address range of the internal RAM is 00H~FFH, where the high 128 bytes (address 80H~FFH) can only be indirectly addressed, and the low 128 bytes (address 00H~7FH) can be directly or indirectly addressed.

The address of the special function register SFR is also 80H~FFH. But the difference between SFR and internal high 128 bytes SRAM is: SFR register is directly addressed, while internal high 128 bytes SRAM can only be indirectly addressed.

The address of the external RAM is 0000H~0FFFH, but it needs to be addressed by the MOVX instruction.

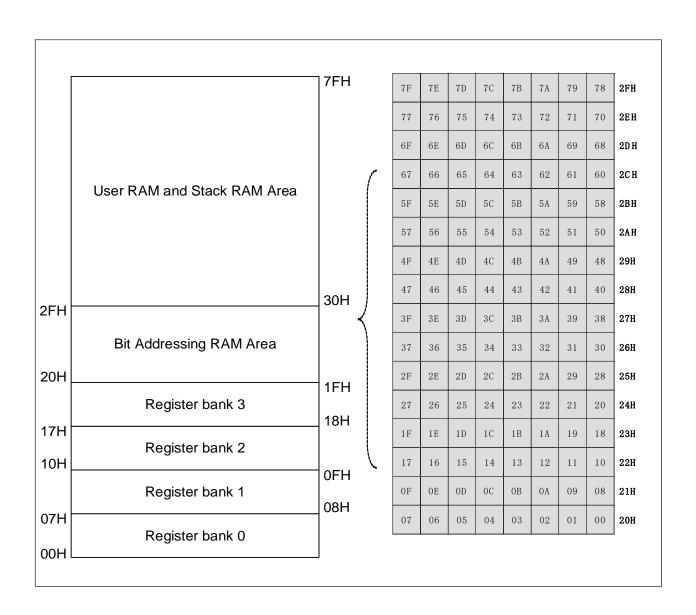
5.8.1 Internal 256 Bytes SRAM


The internal low 128 bytes SRAM area can be divided into three parts:

- ① Operating register group 0~3, address 00H~1FH, the combination of RS0 and RS1 in the program status word register PSW determines the operating register currently used, using operating register group 0~ 3 can speed up the operation;
- ② bit addressing area 20H~2FH, this area can be used as ordinary RAM or bit-wise addressing RAM; when addressing by bit, the bit address is 00H~7FH, (this The address is programmed bit by bit, which is different from the general SRAM coded by byte), which can be distinguished by instructions in the program;
- ③User RAM and stack area, after the SC95F852X is reset, the 8-bit stack pointer points to the stack area, the user needs to set the initial value.

Page 43 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU


Internal 256 bytes RAM structure diagram

The internal low 128 bytes RAM structure is as follows:

Page 44 of 224 V1.0

SRAM structure diagram

5.8.2 External 4096 Bytes SRAM

External 4096 bytes RAM can be accessed through MOVX @DPTR, A; you can also use MOVX A, @Ri or MOVX @Ri, A with EXADH register to access external 4096 bytes RAM: EXADH register stores the high address of external SRAM, Ri register stores the low 8 bits of the external SRAM.

EXADH (F7H) External SRAM Operation Address High Bit (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-		EXADI	H [3: 0]	

Page 45 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
3~0	EXADH [3: 0]	High-bit of external SRAM operation address
7~4	-	reserved

5.8.3 PWM 16 Bytes SRAM

The 1040H~104FH of the RAM address are used as PWM SRAM of 16 bytes. The PWM duty cycle adjustment register occupies 1040H~104FH and can **be read and written**. For specific operation methods, refer to 13.3.2 PWM Independent Mode Duty Cycle Configuration or 13.4.2 PWM Complementary Mode Duty Cycle Configuration;

Page 46 of 224 V1.0

6 Special Function Register (SFR)

6.1 SFR Mapping

The SC95F852X provides some registers equipped with special functions, called SFR. The addresses of these registers are located at 80H~FFH, some are bit-addressable, and others are not. It is very convenient for these bit addressable registers to change the value of single bit, of which the address is end up with figure "0" or "8". All SFR shall use direct addressing for addressing.

The SC95F852X SFR Map is as follows:

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h	-	-	-	BTMCON	CRCINX	CRCREG	OPINX	OPREG
F0h	В	IAPKEY	IAPADL	IAPADH	IAPADE	IAPDAT	IAPCTL	EXADH
E8h	-	EXA0	EXA1	EXA2	EXA3	EXBL	EXBH	OPERCON
E0h	ACC	-	-	-	-	-	-	-
D8h	P5	P5CON	P5PH	-	-	-	-	-
D0h	PSW	PWMCFG	PWMCON0	PWMCON1	PWMPDL	PWMPDH	PWMDFR	PWMFLT
C8h	TXCON	TXMOD	RCAPXL	RCAPXH	TLX	THX	TXINX	WDTCON
C0h	-	-	-	-	US2CON0	US2CON1	US2CON2	US2CON3
B8h	IP	IP1	IP2	INT0R	INT1F	INT1R	INT2F	INT2R
B0h	-	-	-	-	INTOF	ADCCFG2	US0CON4	US0CON5
A8h	IE	IE1	IE2	ADCCFG0	ADCCFG1	ADCCON	ADCVL	ADCVH
A0h	P2	P2CON	P2PH	-	US1CON0	US1CON1	US1CON2	US1CON3
98h	SCON	SBUF	P0CON	P0PH	-	US0CON1	US0CON2	US0CON3

Page 47 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

90h	P1	P1CON	P1PH	-	-	US0CON0	IOHCON0	IOHCON1
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	OTCON
80h	P0	SP	DPL	DPH	DPL1	DPH1	DPS	PCON
	Bit addressabl e			N	on-bit addres	sable		

Note:

- 1. The empty part of the SFR register are not recommended for users.
- The FEH to FFH in SFR are special function registers used in system configuration. Using these registers may cause system exceptions. During system initialization, users cannot clear these registers or perform other operations.

6.2 Register Summary

Mnemonic	Add	Description	7	6	5	4	3	2	1	0	POR
P0	80H	P0 port data register	P07	P06	P05	P04	P03	P02	P01	P00	00000000Ь
SP	81H	Stack pointer	SP[7: 0]							00000111b	
DPL	82H	DPTR data pointer low					DPL[7: 0]				00000000ь
DPH	83H	DPTR data pointer high					DPH[7: 0]				0000000b
DPL1	84H	DPTR1 data pointer low		DPL1[7: 0]							
DPH1	85H	DPTR1 data pointer high					DPH1[7: 0]				00000000Ь
DPS	86H	DPTR selection register	ID1	ID0	TSL	AU1	AU0	-	-	SEL	00000xx0b
PCON	87H	Power management control register	-	-	-	-	RST	-	STOP	IDL	xxxx0x00b
TCON	88H	Timer control register	TF1	TR1	TF0	TR0	IE1	1	IE0	-	00000x0xb

Page 48 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		T									
TMOD	89H	Timer operating mode register	-	C/T1	M11	M01	-	С/Т0	M10	M00	x000x000b
TL0	8AH	Low 8 bits of timer 0	TL0[7: 0]								00000000Ь
TL1	8BH	Low 8 bits of timer 1		TL1[7: 0]							
TH0	8CH	Timer 0 high 8 bits		ТН0[7: 0]							00000000ь
TH1	8DH	Timer 1 high 8 bits		TH1[7: 0]							00000000Ь
TMCON	8EH	Timer frequency control register	USM	USMD2[1: 0] T1FD T0FD						00xxxx00b	
OTCON	8FH	Output control register	USM	D1[1:0]	USM	D0[1:0]	-	-	-	-	0000xxxxb
P1	90H	P1 port data register	P17	P16	P15	P14	P13	P12	P11	P10	00000000Ь
P1CON	91H	P1 port input/output control register	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0	00000000b
P1PH	92H	P1 port pull-up resistor control register	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0	00000000b
US0CON0	95H	USCI0 control register 0	US0CON0[7: 0]							00000000Ь	
IOHCON0	96H	IOH setting register 0	P1H	H[1: 0]	P1I	_[1: 0]	P0H	[1: 0]	P0L[1	: 0]	00000000Ь
IOHCON1	97H	IOH setting register 1	-	-	P5I	_[1: 0]	P2H	[1: 0]	P2L[1	: 0]	xx000000b
SCON	98H	Serial control register	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00000000Ь
SBUF	99H	Serial data buffer register					SBUF[7: 0]				00000000Ь
P0CON	9AH	P0 port input/output control register	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0	00000000ь
РОРН	9ВН	P0 port pull-up resistor control register	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0	00000000Ь
ETUCK0	9DH	ETU rate frequency division register 0 @USMD0= 00					ETUCK[7:0]				01110100b
US0CON1	9DH	USCI0 control register 1 @USMD0= 01/10/11				U	S0CON1[7: (0]			00000000b

Page 49 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

ETUCK1	9EH	ETU rate frequency division register 1 @USMD0= 00	SCCK[4:0] ETUCK [11:8]							00000001b	
US0CON2	9EH	USCI0 control register 2 @USMD0= 01/10/11				U	S0CON2[7: (0]			00000000Ь
US0CON3	9FH	USCI0 control register 3				U	S0CON3[7: (0]			00000000Ь
P2	A0H	P2 port data register	P27	P26	P25	P24	P23	P22	P21	P20	00000000ь
P2CON	A1H	P2 port input/output control register	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0	00000000Ь
P2PH	A2H	P2 port pull-up resistor control register	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0	00000000Ь
US1CON0	A4H	USCI1 control register 0				U	S1CON0[7: (0]			00000000Ь
US1CON1	A5H	USCI1 control register 1				U	S1CON1[7: (0]			00000000Ь
US1CON2	A6H	USCI1 control register 2				U	S1CON2[7: (0]			00000000Ь
US1CON3	А7Н	USCI1 control register 3		US1CON3[7: 0]							
IE	A8H	Interrupt enable register	EA EADC ET2 EUART ET					EINT1	ET0	EINT0	00000000Ь
IE1	А9Н	Interrupt enable register 1	ET4	ET3	1	ETK	EINT2	EBTM	EPWM	ESSI0	00x00000b
IE2	ААН	Interrupt enable register 2	-	-	-	1	-	-	ESSI2	ESSI1	xxxxxx00b
ADCCFG0	АВН	ADC setting register 0	EAIN 7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0	00000000Ь
ADCCFG1	ACH	ADC setting register 1	-	-	-	-	-	-	EAIN9	EAIN8	xxxxxx00b
ADCCON	ADH	ADC control register	ADCE N	ADCS	EOC/ ADCIF			ADCIS[4: 0]		00000000Ь
ADCVL	AEH	ADC result register		AD	CV[3: 0]		-	-	-	-	1111xxxxb
ADCVH	AFH	ADC result register					ADCV[11: 4]				11111111b
INT0F	B4H	INTO falling edge interrupt control register	-	-	-	-	INT0F3	INT0F2	INT0F1	-	xxxx000xb

Page 50 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	T	T	1	ı	1					ı	
ADCCFG2	B5H	ADC setting register 2	-	-	-	I	LOWSP[2: 0]]	-	-	xxx000xxb
US0CON4	В6Н	EGT Extended protection time register					EGT [7:0]				00000000b
US0CON5	В7Н	SCSTA0 SC status register @SES=0	SES	TC	RC	WTRT	TBUSY	RBUSY	WTER	FER	00000000Ь
US0CON5	В7Н	SCSTA1 SC R/W error information register @SES=1	SES	-	ı	-	TPER	RPER	-	ROVF	0xxx00x0b
IP	B8H	Interrupt priority control register	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0	x0000000b
IP1	вэн	Interrupt priority control register 1	IPT4	IPT3	-	IPTK	IPINT2	IPBTM	IPPWM	IPSSI0	00x00000b
IP2	ВАН	Interrupt priority control register 2	-	-	-	-	-	-	IPSSI2	IPSSI1	xxxxxx00b
INTOR	ввн	INT0 rising edge interrupt control register	-	-	-	-	INTOR3	INT0R2	INT0R1	-	xxxx000xb
INT1F	всн	INT1 falling edge interrupt control register	-	-	-	-	INT1F3	INT1F2	INT1F1	INT1F0	xxxx0000b
INT1R	BDH	INT1 rising edge interrupt control register	-	-	-	-	INT1R3	INT1R2	INT1R1	INT1R0	xxxx0000b
INT2F	BEH	INT2 falling edge interrupt control register	-	-	INT2F5	INT2F4	INT2F3	INT2F2	INT2F1	INT2F0	xx000000b
INT2R	BFH	INT2 rising edge interrupt control register	-	-	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	xx000000b
US2CON0	C4H	USCI2 control register 0				U	S2CON0[7: (0]			00000000Ь
US2CON1	C5H	USCI2 control register 1				U	S2CON1[7: (0]			00000000Ь
US2CON2	C6H	USCI2 control register 2				U	S2CON2[7: (0]			00000000b
US2CON3	С7Н	USCI2 control register 3				U	S2CON3[7: (0]			00000000b
TXCON	C8H	Timer 2/3/4 control register	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX	00000000b
TXMOD	С9Н	Timer 2/3/4 operating mode register	TXFD	-	-	-	-	-	TXOE	DCXEN	0xxxxx00b

Page 51 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

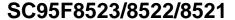
00000000b 00000000b 00000000b xxxxx010b
00000000b 00000000b xxxxx010b
00000000b xxxxx010b
xxxxx010b
xxx0x0000b
00000000Ь
x0000000b
00000000Ь
x0000000b
00000000ь
00000000ь
00000000Ь
0000xx00b
xxxxxx00b
xxxxxx00b
xxxxxx00b
00000000Ь

Page 52 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

EXA1	EAH	Extended Accumulator 1					EXA[15: 8]				00000000Ь
EXA2	EBH	Extended Accumulator 2					EXA[23: 16]				00000000Ь
EXA3	ECH	Extended Accumulator 3					EXA[31: 24]				00000000Ь
EXBL	EDH	Extended B register L		EXB [7: 0]						00000000Ь	
EXBH	EEH	Extended B register H					EXB [15: 8]				0000000b
OPERCON	EFH	Arithmetic control register	OPER S	MD	-	-	-	-	CRCRST	CRCSTA	00xxxx00b
В	F0H	B register		B[7: 0]							00000000b
IAPKEY	F1H	IAP protection register				I	APKEY[7: 0]				00000000Ь
IAPADL	F2H	IAP write address low register		IAPADR[7: 0]							00000000Ь
IAPADH	F3H	IAP write address high register	IAPADR[15: 8]							00000000Ь	
IAPADE	F4H	IAP write to extended address register				I.F	APADER[7: 0]			0000000b
IAPDAT	F5H	IAP data register				I	APDAT[7: 0]				00000000Ь
IAPCTL	F6H	IAP control register	-	ERASE	SERAS E	PRG		BTLD	CMD[1: 0]	x000x000b
EXADH	F7H	High-bit address of external SRAM operation address	-	-	-	-		EXAD	DH [3: 0]		xxxx0000b
втмсон	FBH	Low frequency timer control register	ENBT M	BTMIF	-	-		ВТМІ	FS[3: 0]		00xx0000b
CRCINX	FCH	CRC pointer				(CRCINX[7: 0]	1			0000000b
CRCREG	FDH	CRC register				C	RCREG[7: 0]			nnnnnnnb
OPINX	FEH	Customer Option pointer					OPINX[7: 0]				00000000b
OPREG	FFH	Customer Option register				(OPREG[7: 0]				nnnnnnnb

Page 53 of 224 V1.0



Super High-Speed Low Power Consumption Flash MCU

PWM duty cycle adjustment register (R/W)

Add	7	6	5	4	3	2	1	0	POR	
1040H				PDTO	[15:8]		1	1	00000000b	
1041H				PDT	0[7:0]				00000000b	
1042H				PDT1	[15:8]				00000000b	
1043H				PDT	1[7:0]				0000000b	
1044H				PDT2	2[15:8]				00000000b	
1045H		PDT2[7:0]								
1046H		PDT3[15:8]								
1047H				PDT	3[7:0]				00000000ь	
1048H				PDT4	[15:8]				00000000ь	
1049H				PDT	4[7:0]				00000000b	
104AH				PDT5	5[15:8]				00000000ь	
104BH				PDT	5[7:0]				00000000ь	
104CH				PDT6	5[15:8]				00000000ь	
104DH		PDT6[7:0]								
104EH				PDT7	[15:8]				00000000b	
104FH				PDT	7[7:0]				0000000b	

Page 54 of 224 V1.0

7 Power, Reset And System Clock

7.1 Power Circuit

The SC95F852X power supply system includes BG, LDO, POR, LVR and other circuits, which can achieve reliable operation in the range of 2.0~5.5V. In addition, the IC has a built-in, accurate 2.048/1.024V voltage that can be used as an internal reference voltage for the ADC. Users can find the specific settings in the 18Analog-to-Digital Converter(ADC).

7.2 Power-on Reset

After the SC95F852X power-on, the processes carried out before execution of client software are as follows:

- Reset stage
- Loading information stage
- Normal operation stage

7.2.1 Reset Stage

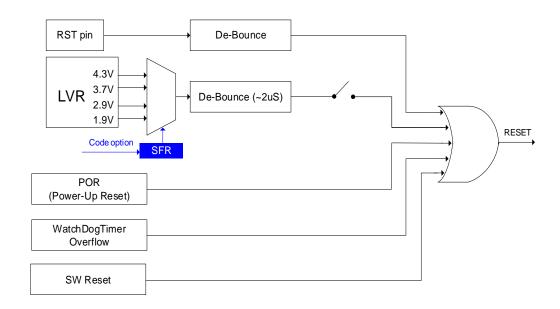
The SC95F852X will always be in the reset mode, There will not be a valid clock until the voltage supplied to the SC95F852X is higher than certain voltage. The duration of reset stage is related to rising speed of external power. Once the external supply voltage is up to built-in POR voltage, the reset stage would be completed.

7.2.2 Loading Information Stage

There is a warm-up counter inside The SC95F852X. During the reset stage, the warm-up counter is cleared to 0 until the voltage exceeds the POR voltage, the internal RC oscillator starts to oscillate, and the warm-up counter starts counting. When the internal warm-up counter counts to a certain number, every certain number of HRC clocks will read a byte of data from the IFB (including Customer Option) in the Flash ROM and store it in the internal system register. This reset signal will not end until the warm-up is completed.

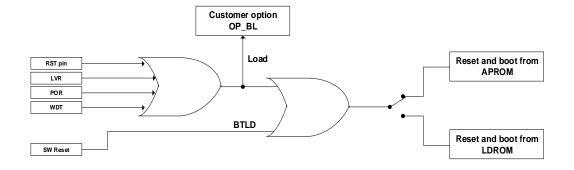
7.2.3 Normal Operation Stage

After finishing the Loading Information stage, The SC95F852X starts to read the instruction code from Flash and enters the normal operation stage. The LVR voltage is the set value of Customer Option written by user.


7.3 Reset Modes

The SC95F852X has 5 reset methods: ① External reset ② Low-voltage reset (LVR) ③ Power-on reset (POR) ④ Watchdog (WDT) reset ⑤ Software reset. The circuit diagram of the reset part of the SC95F852X is as follows:

Page 55 of 224 V1.0



SC95F852X Reset circuit diagram

Reset after the launch of the area:

- 1. the external Reset, Low-voltage Reset, Power-on Reset (POR), Watchdog (WDT) Reset, these four modes following a hardware reset chip from the start of the user OP_BL set area (APROM/LDROM) started.
- 2. Software reset after the chip according to BTLD (IAPCTL. 2) set the start area (APROM/LDROM) start.

SC95F852X Reset start zone switchover diagram

Page 56 of 224 V1.0

7.3.1 External Reset

External reset is a reset pulse signal of a certain width given to SC95F852X from external RST pin to realize the reset of SC95F852X. The user can configure the P1.1/RST pin as RST (reset pin) by Customer Option.

7.3.2 Low-voltage Reset LVR

The SC95F852X provides a low-voltage reset circuit. There are 4-level LVR voltage options: 4.3V, 3.7V, 2.9V, 1.9V. The default value is the Option value written by the user.

OP_CTM0(C1H@FFH) Customer Option Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENWDT	ENXTL	SCLKS[1: 0]		DISRST	DISLVR	LVRS[1: 0]	
R/W	R/W	R/W	R/W		R/W	R/W	R/W	
POR	n	n	r	n		n	n	l

Bit number	Bit Mnemonic	Description
2	DISLVR	LVR enable setting 0: LVR valid 1: LVR invalid
1~0	LVRS [1: 0]	LVR voltage threshold selection control 11: 4.3V 10: 3.7V 01: 2.9V 00: 1.9V

7.3.3 Power-on Reset (POR)

The SC95F852X has a power-on reset circuit inside. When the power supply voltage VDD reaches the POR reset voltage, the system automatically resets.

Page 57 of 224 V1.0

7.3.4 Watchdog Reset (WDT)

The SC95F852X has a WDT, the clock source of which is the internal 32.768kHz LRC. The user can choose whether to enable the watchdog reset function by Customer Option.

OP_CTM0 (C1H@FFH) Customer Option Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENWDT	ENXTL	SCLKS[1: 0]		DISRST	DISLVR	LVRS[1: 0]	
R/W	R/W	R/W	R/W		R/W	R/W	R/W	
POR	n	n	r	١	n	n	r	٦

Bit number	Bit Mnemonic	Description
7	ENWDT	WDT control bit (This bit is transferred by the system to the value set by the user Code Option)
		1: WDT valid
		0: WDT invalid

WDTCON (CFH) WDT Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	CLRWDT	-	WDTCKS[2: 0]		
R/W	-	-	-	R/W	-	R/W		
POR	х	х	х	0	х	0	0	0

Page 58 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic		Description							
4	CLRWDT	Clear WDT (Only va	alid when set to 1) tart, cleared by system hard	ware						
2~0	WDTCKS [2: 0]	Watchdog clock sel	ection							
		WDTCKS[2: 0]	WDTCKS[2: 0] WDT overflow time							
		000								
		001								
		010	125ms							
		011	62.5ms							
		100	31.5ms							
		101	15.75ms							
		110	7.88ms							
		111	111 3.94ms							
7~5,3	-	Reserved								

7.3.5 Software Reset

PCON (87h) Power Management Control Register (write only, *unreadable*)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	1	1	-	-	RST	-	STOP	IDL

Page 59 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R/W	-	-	-	-	Write only	-	Write only	Write only
POR	х	х	х	х	n	х	0	0

Bit number	Bit Mnemonic	Description
3	RST	Software reset control bit:
		Write status:
		0: The program runs normally;
		1: The CPU resets immediately after this bit is written to "1"

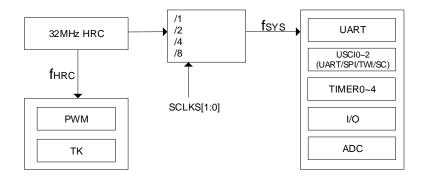
7.3.6 Register Reset Value

When The SC95F852X is in reset state, most registers will return to their initial state. The watchdog (WDT) is turned off. The initial value of the program counter PC is 0000h, and the initial value of the stack pointer SP is 07h. The "hot restart" Reset (such as WDT, LVR, software reset, etc.) will not affect the SRAM, and the SRAM value is always the value before the reset. The loss of SRAM content will occur when the power supply voltage is so low that the RAM cannot be saved.

The initial values of the power-on reset of the SFR register 6.2 Register Summary.

7.4 High-speed RC Oscillator

The SC95F852X has a built-in high-precision high- precision oscillator (HRC) with adjustable oscillation frequency. The HRC is accurately adjusted to 32MHz@5V/25°C at the factory. Users can set the system clock to 32/16/8/4MHz through the Customer Option when programming. This HRC will drift to a certain extent within the full voltage range (2.0V~5.5V) due to the operating ambient temperature:


- -20 ~ 85°C application environment, frequency error does not exceed ±1%
- -40 ~ 105 °C application environment, frequency error does not exceed ±2%

The HRC can be automatically calibrated by connecting an external 32.768kHz crystal oscillator. Users only need to connect an external 32.768kHz crystal oscillator, Users can set the external 32.768kHz crystal oscillator function through the Customer Opiton when programming. The HRC self-calibration function is automatically turned on after the IC is powered on.

Note: The clock source of the PWM and TK circuits is fixed at f_{HRC} = 32MHz.

Page 60 of 224 V1.0

SC95F852X Internal clock relationship

OP_CTM0 (C1H@FFH) Customer Option Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENWDT	ENXTL	SCLKS[1: 0]		DISRST	DISLVR	LVRS[1: 0]	
R/W	R/W	R/W	R/	R/W		R/W	R/W	
POR	n	n	r	1	n	n	r	١

Bit number	Bit Mnemonic	Description
5~4	SCLKS[1: 0]	System clock frequency selection bits
		00: System clock frequency is HRC frequency divided by 1;
		01: System clock frequency is HRC frequency divided by 2;
		10: System clock frequency is HRC frequency divided by 4;
		11: System clock frequency is HRC frequency divided by 8;

The SC95F852X has a special function: the user can modify the value of SFR to adjust the HRC frequency within a certain range. The user can achieve this by configuring the OP_HRCR register. Note: HRC can be automatically

Page 61 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

calibrated by connecting a 32.768kHz crystal oscillator. Therefore, if the user uses the 32.768kHz external crystal oscillator function, the HRC frequency will always be corrected to 32MHz. At this time, adjusting OP_HRCR cannot change the HRC frequency.

OP_HRCR (83h@FFH) System Clock Change Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic		OP_HRCR[7: 0]						
R/W		R/W						
POR	n	n	n	n	n	n	n	n

Bit number	Bit Mnemonic	Description		
7~0	OP_HRCR[7: 0]	modifying the value of the frequency fsys of the IC: 1. The initial value of the IC: OP_HRCR[32MHz, OP 2. When the infrequency fst 32/16/8/4MI		
		The relationship between is as follows: OP_HRCR [7: 0] value OP_HRCR [s]-n	fsys actual output frequency (32M as an example) 32000*(1-0.18%*n)kHz	

Page 62 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	OP_HRCR [s]-2	32000*(1-0.18%*2) = 31 884.8kHz		
	OP_HRCR [s]-1	32000*(1-0.18%*1) = 31 942.4kHz		
	OP_HRCR [s]	32000kHz		
	OP_HRCR [s]+1	32000*(1+0.18%*1) = 32 057.6kHz		
	OP_HRCR [s]+2	32000*(1+0.18%*2) = 32 115.2kHz		
	OP_HRCR [s]+n	32000*(1+0.18%*n)kHz		
	Note:			
	1. After each power-on of the IC, the value of OP_HRCR[7: 0] is the value of the high-frequency oscillator frequency fhrc closest to 32MHz; the user can correct the value of HRC after each power-or to allow the system clock frequency fsys of the IC to work a Frequency required by users;			
	 In order to ensure the reliable operation of the IC, the maximular operating frequency of the IC should not exceed 10% of 32MH that is 35.2MHz; Please confirm that the change of HRC frequency will not affect other functions. 			

7.5 Low-speed RC Oscillator and Low-speed Clock Timer

The SC95F852X has a built-in RC and 32.768kHz crystal oscillator circuit with a frequency of 32kHz, which can be used as the clock source of the Base Timer. The oscillator is directly connected to a Base Timer, which can wake the CPU from STOP mode and generate an interrupt.

BTMCON (FBH) Low-frequency Timer Control Register (read/write)

Bit number 7 6 5	4 3	2	1	0
------------------	-----	---	---	---

Page 63 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

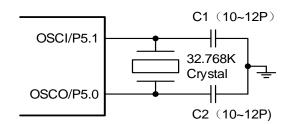
Bit Mnemonic	ENBTM	BTMIF	-	-		BTMF	S[3: 0]	
R/W	R/W	R/W	-	-	R/W			
POR	0	0	х	х	0	0	0	0

Bit number	Bit Mnemonic	Description
7	ENBTM	Low frequency Base Timer start control
		0: Base Timer and its clock source do not start
		1: Base Timer and its clock source start
6	BTMIF	Base Timer interrupt application flag
		When the CPU accepts the Base Timer interrupt, this flag will be automatically cleared by hardware.
3~0	BTMFS [3: 0]	Low frequency clock interrupt frequency selection
		0000: An interrupt is generated every 15.625ms
		0001: An interrupt is generated every 31.25ms
		0010: An interrupt is generated every 62.5ms
		0011: An interrupt is generated every 125ms
		0100: An interrupt is generated every 0.25 seconds
		0101: An interrupt is generated every 0.5 seconds
		0110: An interrupt is generated every 1.0 seconds
		0111: An interrupt is generated every 2.0 seconds
		1000: An interrupt is generated every 4.0ms
		1001: An interrupt is generated every 8.0 seconds
		1010: An interrupt is generated every 16.0 seconds
		1011: An interrupt is generated every 32.0 seconds

Page 64 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

			1100~1111: reserved
5	5~4	-	reserved

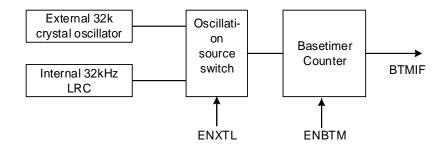

OP_CTM0 (C1H@FFH) Customer Option Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENWDT	ENXTL	SCLKS[1: 0]		DISRST	DISLVR	LVRS[1: 0]	
R/W	R/W	R/W	R/W		R/W	R/W	R/	W.
POR	n	n	n		n	n	ľ	٦

Bit number	Bit Mnemonic	Description
6	ENXTL	External 32.768kHz crystal selector switch 0: The external 32.768kHz crystal is off, P5.0 and P5.1 are valid, and the internal LRC is valid; 1: The external 32.768kHz crystal is turned on, P5.0 and P5.1 are invalid, and the internal LRC is invalid.

Note: HRC can be automatically calibrated by connecting a 32.768kHz crystal oscillator. Therefore, if the user uses the 32.768kHz external crystal oscillator function, the HRC frequency will always be corrected to 32MHz. At this time, adjusting OP_HRCR cannot change the HRC frequency.

The connection circuit used by P5.0/P5.1 external 32k oscillator as BaseTimer is as follows:


Page 65 of 224 V1.0

32.768kHz external crystal connection diagram

The internal and external oscillation selection relationship of Base Timer is as follows:

Base Timer Structure diagram

7.6 Power Saving Modes

The SC95F852X supports two different software selectable power-reducing modes: IDLE and STOP. These modes are accessed through the PCON register.

Setting the PCON.1 bit enters STOP mode. STOP mode stops the internal high-frequency oscillator in order to minimize power consumption. In STOP mode, users can wake up the SC95F852X through external interrupts INT0~INT2, low-frequency clock interrupt and WDT, or STOP through external reset.

Setting the PCON.0 bit enters IDLE mode. In IDLE mode the program stops running and all CPU states are saved before entering IDLE mode. IDLE mode can be woken up by any interrupt.

PCON (87H) Power Management Control Register (read/write) (write only, *not readable*)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	RST	-	STOP	IDL
R/W	-	-	-	-	Write only	-	Write only	Write only
POR	х	х	х	х	n	х	0	0

Bit number	Bit Mnemonic	Description
------------	--------------	-------------

Page 66 of 224 V1.0

.

SC95F8523/8522/8521

Super High-Speed Low Power Consumption Flash MCU

1	STOP	STOP mode bit. Setting this bit activates STOP mode operation.
0	IDL	IDLE mode bit. Setting this bit activates Idle mode operation.

Notes: When Configuring MCU to enter STOP or IDLE mode, the instruction of configuring PCON register should be followed by 8 "NOP" instructions rather than other instructions. Or else, it will be unable to execute following instructions normally after wake-up!

be unable to execute following instructions normally after wake-up! For example: set MCU to enter STOP mode: Example in C Language #include"intrins.h" PCON = 0x02; // PCON bit1 STOP bit write 1, configure the MCU to enter STOP mode // At least 8 _nop_() are required _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); Assembly Language: ORL PCON,#02H ; PCON bit1 STOP bit write 1, configure the MCU to enter STOP mode NOP ; At least 8 NOPs are requiredNOP NOP NOP NOP NOP NOP NOP

Page 67 of 224 V1.0

8 CPU and Instruction Set

8.1 CPU

The SC95F852X is built around an enhanced super-high-speed 1T 8051 core, and its instructions are fully compatible with classic 8051 core.

8.2 Addressing Mode

The addressing modes of 1T 8051 CPU instructions of the SC95F852X : ①Immediate Addressing ② Direct Addressing ③ Indirect Address ④ Register Addressing ⑤ Relative Addressing ⑥ Indexed Addressing ⑦ Bit Addressing.

8.2.1 Immediate Addressing

Immediate addressing is also called immediate data. It directly gives the operands participating in the operation in the instruction operand. Examples of instructions are as follows:

MOV A, #50H (This instruction sends the immediate value 50H to accumulator A)

8.2.2 Direct Addressing

In direct addressing mode, the instruction operand field gives the address of the operand to participate in the operation. The direct addressing mode can only be used to represent special function registers, internal data registers, and bit address spaces. The special function registers and bit address spaces can only be accessed by direct addressing.

Examples are as follows:

ANL 50H, #91H

(indicating that the number in the 50H unit is ANDed with the immediate 91H, and the result is stored in the 50H unit. 50H is straightConnected to the address, representing a unit in the internal data register RAM.)

8.2.3 Indirect Addressing

Indirect addressing is indicated by adding the "@" symbol before R0 or R1. Assuming that the data in R1 is 40H, and the data in the internal data memory 40H unit is 55H, the instruction is

MOV A, @R1 (Transfer data 55H to accumulator A).

8.2.4 Register Addressing

When register addressing, operate on the selected operating registers R7~R0, accumulator A, general register B, address register and carry C. Registers R7~R0 are represented by the low three bits of the instruction code, and ACC, B, DPTR and carry bit C are implicitly contained in the instruction code. Therefore, register addressing also includes an implicit addressing method. The selection of the register operating area is determined by RS1 and RS0 in the program status word register PSW. The register specified by the instruction operand refers to the register in the current operating area.

INC R0 Refers to(R0)+1→R0

8.2.5 Relative Addressing

Page 68 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Relative addressing is to add the current value in the program counter PC to the number given by the second byte of the instruction, and the result is used as the branch address of the branch instruction. The branch address also becomes the branch destination address, the current value in the PC becomes the base address, and the number given by the second byte of the instruction becomes the offset. Since the destination address is relative to the base address in the PC, this addressing method becomes relative addressing. The offset is a signed number, and the range that can be expressed is +127~-128. This addressing method is mainly used for branch instructions.

JC \$+50H

It means that if the carry bit C is 0, the content in the program counter PC does not change, that is, it does not transfer. If the carry bit C is 1, the current value and base address in the PC plus the offset 50H will be used as the destination address of the branch instruction.

8.2.6 Indexed Addressing

In the indexed addressing mode, the instruction operand specifies an index register that stores the index base address. In indexed addressing, the offset is added to the index base value, and the result is used as the address of the operand. The index registers are the program counter PC and the address register DPTR.

MOVC A, @A+DPTR

It indicates that the accumulator A is an offset register, and its content is added to the content of the address register DPTR. The result is used as the address of the operand, and the number in this unit is taken out and sent to the accumulator A.

8.2.7 Bits Addressing

Bit addressing refers to the addressing mode when performing bit operations on some internal data memory RAMs and special function registers that can perform bit operations. When performing bit operations, with the help of carry bit C as a bit operation accumulator, the instruction operand directly gives the address of the bit, and then performs bit operation on the bit according to the nature of the opcode. The bit address is exactly the same as the byte address encoding method in direct byte addressing, which is mainly distinguished by the nature of the operation instruction, and special attention should be paid when using it.

MOV C, 20H (The value of the bit manipulation register with address 20H is sent to carry bit C)

8.3 Introduction of Common Special Function Registers of 8051 Core

Program Counter PC

The program counter PC does not belong to the SFR register. The PC has 16 bits and is a register used to control the order of execution of instructions. After the MCU is powered on or reset, the PC value is 0000H, which means that the MCU program starts executing the program from the 0000H address.

Accumulator ACC (E0H)

The accumulator ACC is one of the most commonly used registers of the 8051 core single-chip microcomputer, and A is used as a mnemonic in the instruction set. Commonly used to store operands and results that participate in calculations or logical operations.

B Register (F0H)

The B register must be used with the accumulator A in multiplication and division operations. The multiplication instruction MUL A, B multiplies the 8-bit unsigned number in accumulator A and register B. The low-bit byte of the

Page 69 of 224 V1.0

http://www.socmcu.com

Super High-Speed Low Power Consumption Flash MCU

resulting 16-bit product is placed in A, and the high-bit byte is placed in B. The division instruction DIV A, B divides A by B, the integer quotient is placed in A, and the remainder is placed in B. Register B can also be used as a general temporary storage register.

Stack Pointer SP (81H)

The stack pointer is an 8-bit special register that indicates the location of the top of the stack in general-purpose RAM. After the one-chip computer is reset, the initial value of SP is 07H, that is, the stack will increase upward from 08H. 08H~1FH is operating register group 1~3.

PSW (D0H) Program Status Word Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	CY	Flag 1: When there is a carry in the highest bit of addition, or a borrow in the highest bit of subtraction 0: When there is no carry in the highest bit of addition, or there is no borrow in the highest bit of subtraction
6	AC	Carry auxiliary flag (can be easily adjusted during the addition and subtraction of BCD code) 1: When the addition operation has a carry in bit3, or the subtraction operation has a borrow in bit3 0: No borrowing, carry
5	F0	User flag

Page 70 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

4~3	RS1、RS0	Operating register group selection bits:				
		RS1	RS0	Operating register set currently in use 0~3		
		0	0	TEAM 0 (00H~07H)		
		0	1	TEAM 1 (08H~0FH)		
		1	0	TEAM 2 (10H~17H)		
		1	1	TEAM 3 (18H~1FH)		
2	ov	Overflow flag				
1	F1	F1 sign User-defined sign				
0	Р	Parity flag. This flag bit is the parity value of the number of 1s in the accumulator ACC. 1: The number of 1s in ACC is odd				
		0: The number of 1s in ACC is even (including 0)				

Data Pointers DPTR0 (82H, 83H), DPTR1 (84H, 85H) And Its Selection Register DPS (86H)

The SC95F852X has two data pointers DPTR0 and DPTR1. Data pointers DPTR0/DPTR1 are 16-bit special registers, which are composed of low 8-bit DPL/DPL1 and high 8-bit DPH/DPH1. DPTR0/DPTR1 is a register that can directly perform 16-bit operations, and can also operate on DPL and DPH in bytes respectively. The selection and operating status of the data pointer DPTR0/DPTR1 are set by the data pointer selection register DPS.

DPS(86H)Data Pointer Selection Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ID1	ID0	TSL	AU1	AU0	-	-	SEL

Page 71 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R/W	R/W	R/W	R/W	R/W	R/W	-	-	R/W
POR	0	0	0	0	0	х	х	0

Bit number	Bit Mnemonic	Description
7	ID1	DPTR1 plus or minus control bit 0: When AU1=1, whenever the MOVC/MOVX @DPTR is executed, the current DPTR1 will automatically increase by 1. 1: When AU1=1, whenever MOVC/MOVX @DPTR is executed, the current DPTR1 will automatically decrease by 1.
6	ID0	DPTR plus or minus control bit 0: When AU0=1, whenever MOVC/MOVX @DPTR is executed, the current DPTR0 will automatically increase by 1. 1: When AU0=1, whenever MOVC/MOVX @DPTR is executed, the current DPTR0 is automatically decremented by 1.
5	TSL	SEL flip control bit 0: Whenever MOVC/MOVX @DPTR is executed, DPS.0 (SEL) does not flip 1: Whenever MOVC/MOVX @DPTR is executed, DPS.0 (SEL) flips once
4	AU1	DPTR1 automatic plus and minus control bit 0: None 1: Whenever MOVC/MOVX @DPTR is executed, the current DPTR1 will increase or decrease by 1 (depending on ID1)
3	AU0	DPTR automatic plus and minus control bit 0: None 1: Whenever MOVC/MOVX @DPTR is executed, the current DPTR0 will increase or decrease by 1 (depending on ID0)

Page 72 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

0	SEL	DPTR0, DPTR1 selection bits
		0: MOVC/MOVX @DPTR object is DPTR0
		1: MOVC/MOVX @DPTR object is DPTR1
2~1	-	reserved

Page 73 of 224 V1.0

9 Interrupts

SC95F852X provides 16 interrupt sources: TIMER 0~4, INT0~2, ADC, PWM, UART, USCI0~2, BASE TIMER, TK.The 16 interrupt sources are divided into two interrupt priorities and can be set to either high or low priority separately. Three external interrupts can be set as up, down or both trigger conditions for each interrupt source respectively. Each interrupt has its own priority setting bit, interrupt flag, interrupt vector and enable bit respectively. The total enable bit EA can open or close all interrupts.

9.1 Interrupt Source and Vector

The list of the SC95F852X interrupt sources, interrupt vectors, and related control bits are as follows:

Interrupt Source	Interrupt condition	Interrupt Flag	Interrupt Enable Control	Interrupt Priority Control	Interrupt Vector	Query Priority	Interrupt Number (C51)	Flag Clear Mode	Capability of Waking up STOP
INTO	External interrupt 0 conditions are met	IE0	EINTO	IPINT0	0003H	1 (HIGH)	0	H/W Auto	YES
Timer0	Timer0 overflow	TF0	ET0	IPT0	000BH	2	1	H/W Auto	NO
INT1	External interrupt 1 conditions are met	IE1	EINT1	IPINT1	0013H	3	2	H/W Auto	YES
Timer1	Timer1 overflow	TF1	ET1	IPT1	001BH	4	3	H/W Auto	NO
UART	Receive or send completed	RI/TI	EUART	IPUART	0023H	5	4	Must user Clear	NO
Timer2	Timer2 overflow	TFX	ET2	IPT2	002BH	6	5	Must user Clear	NO
ADC	ADC conversio n completed	ADCIF	EADC	IPADC	0033H	7	6	Must user Clear	NO

Page 74 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

USCI0	Receive or send completed	SPIF0/TWI F0	ESSI0	IPSPI	003BH	8	7	Must user Clear	NO
PWM	PWM overflow	PWMIF	EPWM	IPPWM	0043H	9	8	Must user Clear	NO
ВТМ	Base timer overflow	BTMIF	EBTM	IPBTM	004BH	10	9	H/W Auto	YES
INT2	External interrupt 2 conditions are met	-	EINT2	IPINT2	0053H	11	10	-	YES
ТК	Touch Key counter overflowe d	TKIF	ETK	IPTK	005BH	12	11	H/W Auto	NO
Timer3	Timer3 overflow	TFX	ET3	IPT3	006BH	14	13	Must user Clear	NO
Timer4	Timer4 overflow	TFX	ET4	IPT4	0073H	15	14	Must user Clear	NO
USCI1	Receive or send completed	SPIF1/TWI F1	ESSI1	IPSPI1	007BH	16	15	Must user Clear	NO
USCI2	Receive or send completed	SPIF2/TWI F2	ESSI2	IPSPI2	0083H	17	16	Must user Clear	NO

Under the circumstance where the master interrupt control bit EA and the respective interrupt control bit have been enable, the interrupt occurrence is shown below:

Timer Interrupt: Interrupt generates when Timer0 or Timer1 overflows and the interrupt flag TF0 or TF1 is set to "1". When the microcontroller unit responds to the timer interrupt, the interrupt flag TF0 or TF1 is reset automatically by hardware. Interrupt generates when Timer2 overflows and the interrupt flag TF2 is set to "1". Once Timer2 interrupt generates, the hardware would not automatically clear TF2 bit, which must be cleared by the user's software.

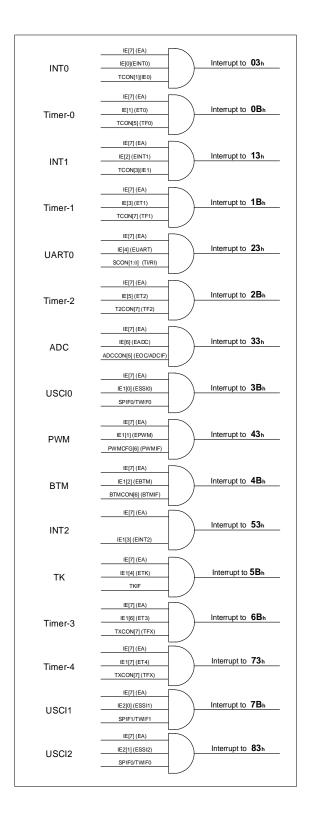
Page 75 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

UART Interrupt: When UART0 completes receiving or transmitting a frame of data, bit RI or TI will be set to "1" automatically by hardware, and UART interrupt occurs. Once UART interrupt occurs, the hardware would not automatically clear up RI/TI bit, which shall be cleared by user's software.

ADC Interrupt: After ADC conversion is completed, ADC interrupt generates, whose interrupt flag is the ADC conversion completion flag EOC/ADCIF (ADCCON.5). When user starts ADCS conversion, EOC will be reset automatically by hardware. Once conversion completes, EOC would be set to "1" automatically by hardware. User should clear the ADC interrupt flag by software when the interrupt service routine is executed after ADC interrupt generates.

SSI Interrupt: When SSI completes receiving or transmitting a frame of data, SPIF/TWIF bit will be set to "1" automatically by hardware, and SSI interrupt generates. When the microcontroller unit serves SSI interrupt, the interrupt flag SPIF/TWIF must be cleared by software.


PWM Interrupt: When PWM counter overflows (beyond PWMPD), the flag will be set as 1 automatically by hardware. Meanwhile, if the PWM interrupt control bit IE1[1] (EPWM) is set as 1, PWM interrupt will occurs. Once PWM interrupt occurs, the hardware would not clear the interrupt flag automatically, which shall be cleared by user's software.

External Interrupt INT0 ~ 2: When any external interrupt pin meets the interrupt conditions, external interrupt generates. INT0 and INT1 will generate interrupt flags IE0/IE1, the user does not need to handle, the hardware will automatically clear. INT0 has three external interrupt sources, INT1 has four external interrupt sources, INT2 has six external interrupt sources, users can according to the need to set the upper edge, lower edge or double edge interrupt, can be achieved by setting SFR (INTxF and INTxR). The IP register allows the user to set the priority level of each interrupt. The external interrupt INT0~2 can also wake up the STOP of the SCM.

Page 76 of 224 V1.0

9.2 Interrupt Structure Diagram

The interrupt structure of SC95F852X is shown below:

SC95F852X Interrupt structure and vector

Page 77 of 224 V1.0 http://www.socmcu.com

9.3 Interrupt Priority

Each interrupt source can be individually programmed to one of two priority levels by setting or clearing bits in the interrupt priority registers: IP, IP0, IP1. An interrupt service routine in progress can be interrupted by a higher priority interrupt. The highest priority interrupt cannot be interrupted by any other interrupt source. If two requests of different priority levels are pending at the end of an instruction, the request of higher priority level is serviced. If requests of the same priority level are pending at the end of an instruction, an internal polling sequence determines which request is serviced. The polling sequence is based on the vector address; an interrupt with a lower vector address has higher priority than an interrupt with a higher vector address.

9.4 Interrupt Processing Flow

When an interrupt is generated and responded by the CPU, the main program execution is interrupted and the following operations will be performed:

- The currently executing instruction is finished;
- The PC value is pushed into the stack to protect the scene;
- The interrupt vector address is loaded into the program counter PC;
- 4 Execute the corresponding interrupt service program;
- (5) The interrupt service routine ends and RETI;
- 6 Unstack the PC value and return to the program before the interruption.

In this process, the system will not immediately execute other interrupts of the same priority, but will retain the interrupt request that has occurred, and after the current interrupt processing is completed, go to execute a new interrupt request.

9.5 Interrupt-related SFR Registers

IE (A8H) Interrupt Enable Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
------------	--------------	-------------

Page 78 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	<u> </u>	
7	EA	Interrupt enable total control 0: Close all interrupts 1: Enable all interrupts
6	EADC	ADC interrupt enable control 0: Disable ADC interrupt 1: Allow the ADC to generate an interrupt when the conversion is complete
5	ET2	Timer2 interrupt enable control 0: Disable Timer2 interrupt 1: Enable Timer2 interrupt
4	EUART	UART interrupt enable control 0: Disable UART interrupt 1: Allow UART interrupt
3	ET1	Timer1 interrupt enable control 0: Disable Timer 1 interrupt1: Enable Timer1 interrupt
2	EINT1	External interrupt 1 enable control 0: close INT1 interrupt 1: Enable INT1 interrupt
1	ET0	Timer0 interrupt enable control 0: Disable TIMER0 interrupt 1: Enable TIMER0 interrupt
0	EINT0	External interrupt 0 enable control 0: close INT0 interrupt

Page 79 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	1: Enable INT0 interrupt

IP (B8H) Interrupt Priority Control Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
6	IPADC	ADC interrupt priority selection 0: ADC interrupt priority is low 1: ADC interrupt priority is high
5	IPT2	Timer2 interrupt priority selection 0: Timer2 interrupt priority is low 1: Timer2 interrupt priority is high
4	IPUART	UART interrupt priority selection 0: UART interrupt priority is low 1: UART interrupt priority is high
3	IPT1	Timer1 interrupt priority selection 0: Timer1 interrupt priority is low 1: Timer1 interrupt priority is high

Page 80 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

2	IPINT1	INT1 counter interrupt priority selection 0: INT1 interrupt priority is low 1: INT1 interrupt priority is high
1	IPT0	Timer0 interrupt priority selection 0: Timer0 interrupt priority is low 1: Timer0 interrupt priority is high
0	IPINT0	INT0 counter interrupt priority selection 0: INT0 interrupt priority is low 1: INT0 interrupt priority is high
7	-	Reserved

IE1 (A9H) Interrupt Enable Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ET4	ET3	-	ETK	EINT2	EBTM	EPWM	ESSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	х	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	ET4	Timer4 interrupt enable control 0: Disable Timer4 interrupt 1: Enable Timer4 interrupt

Page 81 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

6	ET3	Timer3 interrupt enable control 0: Disable Timer3 interrupt 1: Enable Timer3 interrupt
4	тк	Touch Key interrupts enable control 0: Turn off Touch Key interrupt 1: Open Touch Key interrupt
3	EINT2	External interrupt 2 enable control 0: close INT2 interrupt 1: Open INT2 interrupt
2	ЕВТМ	Base Timer interrupt enable control 0: Disable Base Timer interrupt 1: Enable Base Timer interrupt
1	EPWM	PWM interrupt enable control 0: Disable PWM interrupt 1: Enable interrupt when PWM count overflows
0	ESSI0	Three-in-one serial port USCI0 interrupt enable control 0: Disable serial port interrupt 1: Allow serial port interrupt
5	-	Reserved

IP1 (B9H) Interrupt Priority Control Register 1 (read/write)

Bit number 7 6 5 4 3 2 1 0
--

Page 82 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	IPT4	IPT3	-	IPTK	IPINT2	IPBTM	IPPWM	IPSSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	Х	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	IPT4	Timer4 interrupt priority selection 0: Timer4 interrupt priority is low 1: Timer4 interrupt priority is high
6	IPT3	Timer3 interrupt priority selection 0: Timer3 interrupt priority is low 1: Timer3 interrupt priority is high
4	IPTK	Touch Key interrupts priority selection 0: Touch Key interrupt priority is low 1: Touch Key interrupt priority is high
3	IPINT2	INT2 counter interrupt priority selection 0: INT2 interrupt priority is low 1: INT2 interrupt priority is high
2	IPBTM	Base Timer interrupt priority selection 0: Base Timer interrupt priority is low 1: Base Timer interrupt priority is high
1	IPPWM	PWM interrupt enable selection 0: PWM interrupt priority is low

Page 83 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		1: PWM interrupt priority is high
0	IPSSI0	Three-in-one serial port USCI0 interrupt priority selection
		0: USCI0 interrupt priority is low
		1: USCI0 interrupt priority is high
0	-	Reserved

IE2 (AAH) Interrupt Enable Register 2 (read/write)

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	ESSI2	ESSI1
Read/ Write	-	-	-	-	-	-	Read/ Write	Read/ Write
Initial power-on value	х	х	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
1	ESSI2	Three-in-one serial port USCI2 interrupt enable control 0: Disable serial port interrupt 1: Allow serial port interrupt
0	ESSI1	Three-in-one serial port USCI1 interrupt enable control 0: Disable serial port interrupt 1: Allow serial port interrupt
7~2	-	Reserved

Page 84 of 224 V1.0

IP2 (BAH) Interrupt Priority Control Register 2 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	-	IPSSI2	IPSSI1
R/W	-	-	-	-	-	-	R/W	R/W
POR	х	х	х	х	х	x	0	0

Bit number	Bit Mnemonic	Description
1	IPSSI2	Three-in-one serial port USCI2 interrupt priority selection 0: USCI2 interrupt priority is low 1: USCI2 interrupt priority is high
0	IPSSI1	Three-in-one serial port USCI1 interrupt priority selection 0: USCI1 interrupt priority is low 1: USCI1 interrupt priority is high
7~2	-	Reserved

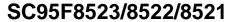
TCON (88H) Timer Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TF1	TR1	TF0	TR0	IE1	-	IE0	1
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-

Page 85 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR	0	0	0	0	0	х	0	х
-----	---	---	---	---	---	---	---	---


Bit number	Bit Mnemonic	Description
3	IE1	INT1 overflow interrupt request flag. INT1 generates an overflow. When an interrupt occurs, the hardware sets IE1 to "1" and applies for an interrupt. When the CPU responds, the hardware clears "0".
1	IE0	INTO overflow interrupt request flag. INTO generates an overflow. When an interrupt occurs, the hardware sets IEO to "1" and applies for an interrupt. When the CPU responds, the hardware clears "0".
2,0	-	Reserved

INT0F (B4H) INT0 Falling Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	INT0F3	INT0F2	INT0F1	-
R/W	-	-	-	-	R/W	R/W	R/W	-
POR	х	х	х	х	0	0	0	х

Bit number	Bit Mnemonic	Description
3~1	INT0Fn (n=3~1)	INT0 falling edge interrupt control 0: INT0n falling edge interrupt close 1: INT0n falling edge interrupt enable
7~4, 0	-	Reserved

Page 86 of 224 V1.0

INTOR (BBH) INTO Rising Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	INTOR3	INT0R2	INT0R1	-
R/W	-	-	-	-	R/W	R/W	R/W	-
POR	х	х	х	х	0	0	0	х

Bit number	Bit Mnemonic	Description
3~1	INT0Rn (n=7~4)	INT0 rising edge interrupt control 0: INT0n rising edge interrupt close 1: INT0n rising edge interrupt enable
7~4,0	-	Reserved

INT1F (BCH) INT1 Falling Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	INT1F3	INT1F2	INT1F1	INT1F0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
POR	х	х	х	х	0	0	0	0

Bit number Bit Mnemonic	Description
-------------------------	-------------

Page 87 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

3~0	INT1Fn (n=3~0)	INT1 falling edge interrupt control 0: INT1n falling edge interrupt close 1: INT1n falling edge interrupt enable
7~4	-	Reserved

INT1R (BDH) INT1 Rising Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	INT1R3	INT1R2	INT1R1	INT1R0
R/W	-	-	-	-	R /W	R/W	R /W	R/W
POR	х	х	х	х	0	0	0	0

Bit number	Bit Mnemonic	Description
3~0	INT1Rn (n=7~0)	INT1 rising edge interrupt control 0: INT1n rising edge interrupt off 1: INT1n rising edge interrupt enable
7~4	-	Reserved

INT2F (BEH) INT2 Falling Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	INT2F5	INT2F5	INT2F3	INT2F2	INT2F1	INT2F0

Page 88 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	х	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
5~0	INT2Fn (n=5~0)	INT2 falling edge interrupt control 0: INT2n falling edge interrupt close 1: INT2n falling edge interrupt enable
7~6	-	Reserved

INT2R (BFH) INT2 Rising Edge Interrupt Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	х	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
5~0	INT2Rn (n=5~0)	INT2 rising edge interrupt control 0: INT2n rising edge interrupt close 1: INT2n rising edge interrupt enable
7~6	-	Reserved

Page 89 of 224 V1.0

10 Timer/Counter T0 and T1

Timer0 and Timer1 inside the SC95F852X MCU are two 16-bit timers/counters. They have two operating modes: counting mode and timing mode. There is a control bit C/Tx in the special function register TMOD to select whether T0 and T1 are timers or counters. They are essentially an addition counter, but the source of the count is different. The source of the timer is the system clock or its divided clock, but the source of the counter is the input pulse of the external pin. Only when TRx=1, T0 and T1 will be opened to count.

In counter mode, for each pulse on the P1.2/T0 and P1.3/T1 pins, the count value of T0 and T1 increases by 1, respectively.

In the timer mode, the count source of T0 and T1 can be selected as fsys/12 or fsys through the special function register TMCON (fsys is the divided system clock).

There are 4 operating modes for timer/counter T0, and 3 operating modes for timer/counter T1 (mode 3 does not exist):

- (1) Mode 0: 13-bit timer/counter mode
- (2) Mode 1: 16-bit timer/counter mode
- (3) Mode 2: 8-bit auto-reload mode
- (4) Mode 3: Two 8-bit timer/counter modes

In the above modes, modes 0, 1, and 2 of T0 and T1 are the same, and mode 3 is different.

10.1 T0 and T1-related Registers

Symbol	Address	Description	7	6	5	4	3	2	1	0	POR
TCON	88H	Timer control register	TF1	TR1	TF0	TR0	IE1	1	IE0	1	00000x0xb
TMOD	89H	Timer operating mode register	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TLO	8AH	Low 8 bits of timer 0	TL0[7: 0]								0000000b
TL1	8BH	Low 8 bits of timer 1		TL1[7: 0]							00000000b
TH0	8CH	Timer 0 high 8 bits		TH0[7: 0]							00000000b
TH1	8DH	Timer 1 high 8 bits	TH1[7: 0]							00000000b	
TMCON	8EH	Timer frequency control register		1D2[1: 0]	-	-	-	-	T1FD	T0FD	00xxxx00b

Page 90 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

The explanation of each register is as follows:

TCON (88H) Timer Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
POR	0	0	0	0	0	х	0	х

Bit number	Bit Mnemonic	Description
7	TF1	T1 overflow interrupt request flag. T1 generates an overflow. When an interrupt occurs, the hardware sets TF1 to "1" and applies for an interrupt. When the CPU responds, the hardware clears "0".
6	TR1	Operation control bit of timer T1. This bit is set and cleared by software. When TR1=1, T1 is allowed to start counting. When TR1=0, T1 counting is prohibited.
5	TF0	To overflow interrupt request flag. To overflows. When an interrupt occurs, the hardware sets TF0 to "1" and applies for an interrupt. When the CPU responds, the hardware clears "0".
4	TR0	Operation control bit of timer T0. This bit is set and cleared by software. When TR0=1, T0 is allowed to start counting. When TR0=0, T0 counting is prohibited.
2,0	-	Reserved

TMOD (89H) Timer Operating Mode Register (read/write)

Bit	t number	7	6	5	4	3	2	1	0
-----	----------	---	---	---	---	---	---	---	---

Page 91 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	-	C/T1	M11	M01	-	C/T0	M10	M00
R/W	-	R/W	R/W	R/W	-	R/W	R/W	R/W
POR	х	0	0	0	х	0	0	0
		Т	1			Т	0	

Bit number	Bit Mnemonic	Description
6	С/Т1	TMOD[6] control timer 1 0: Timer, T1 count comes from fsys frequency division 1: Counter, T1 count comes from external pin T1/P1.3
5~4	M11,M01	Timer/Counter 1 mode selection 00: 13-bit timer/counter, the upper 3 bits of TL1 are invalid 01: 16-bit timer/counter, TL1 and TH1 all 10: 8-bit auto-reload timer, automatically reload the value stored in TH1 into TL1 when overflow 11: Timer/Counter 1 is invalid (stop counting)
2	С/Т0	TMOD[2] control timer 0 0: Timer, T0 count comes from fsys frequency division 1: Counter, T0 count comes from external pin T0/P1.2
1~0	M10,M00	Timer/Counter 0 mode selection 00: 13-bit timer/counter, the upper 3 bits of TL0 are invalid 01: 16-bit timer/counter, TL0 and TH0 all 10: 8-bit auto-reload timer, automatically reload the value stored in TH0 into TL0 when overflow

Page 92 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		11: Timer 0 is now a dual 8-bit timer/counter. TL0 is an 8-bit timer/counter controlled by the control bits of standard timer 0; TH0 is only an 8-bit timer controlled by the control bits of timer 1.
7,3	-	Reserved

TMOD[0]~TMOD[2] in TMOD register is to set the operating mode of T0; TMOD[4]~TMOD[6] is to set the operating mode of T1.

The timer and counter Tx functions are selected by the control bits C/Tx of the special function register TMOD. M0x and M1x are used to select the Tx operating mode. TRx acts as the switch control of T0 and T1. Only when TRx=1, T0 and T1 are turned on.

TMCON (8EH) Timer Frequency Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	USMD2[1: 0]		-	-	-	-	T1FD	T0FD
R/W	R/W R/W		-	-	-	-	R/W	R/W
POR	0	0	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description					
1	T1FD	T1 input frequency selection control 0: T1 frequency is derived from fsys/12 1: T1 frequency is derived from fsys					
0	T0FD	T0 input frequency selection control 0: T0 frequency is derived from fsys/12 1: T0 frequency is derived from fsys					

IE (A8H) Interrupt Enable Register (read/write)

Page 93 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
3	ET1	Timer1 interrupt enable control 0: Disable Timer1 interrupt 1: Enable Timer1 interrupt
1	ET0	Timer0 interrupt enable control 0: Disable Timer0 interrupt 1: Enable Timer0 interrupt

IP (B8H) Interrupt Priority Control Register (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
------------	--------------	-------------

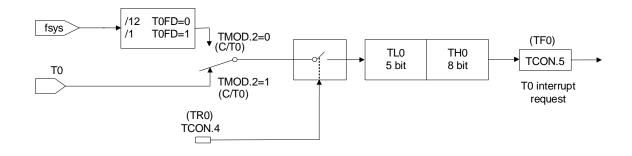
Page 94 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

3	IPT1	Timer1 interrupt priority 0: Set the interrupt priority of Timer 1 to "Low" 1: Set the interrupt priority of Timer 1 to "High"
1	IPT0	Timer0 interrupt priority 0: Set the interrupt priority of Timer 0 to "Low" 1: Set the interrupt priority of Timer 0 to "High"

10.2 T0 Operating Modes

By setting M10 and M00 (TMOD[1], TMOD[0]) in the register TMOD, timer/counter 0 can realize 4 different operating modes.


Operating Mode 0: 13-bit Counter/Timer

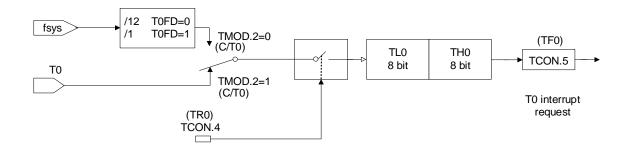
TH0 register stores the upper 8 bits (TH0.7~TH0.0) of the 13-bit counter/timer, and the TL0 stores the low 5 bits (TL0.4~TL0.0). The upper three bits of TL0 (TL0.7~TL0.5) are uncertain values and should be ignored when reading. When the 13-bit timer/counter overflows, the system will set the timer overflow flag TF0 to 1. If the timer 0 interrupt is enabled, an interrupt will be generated.

C/T0 bit selects the clock input source of the counter/timer. If C/T0=1, the level change of the timer 0 input pin T0 (P0.2) from high to low will increase the timer 0 data register by 1. If C/T0=0, select the frequency division of the system clock as the clock source of timer 0.

When TR0 is set to 1, the timer T0 is started. Setting TR0 does not forcibly reset the timer, meaning that if TR0 is set, the timer register will start counting from the value when TR0 was cleared last time. Therefore, before enabling the timer, the initial value of the timer register should be set.

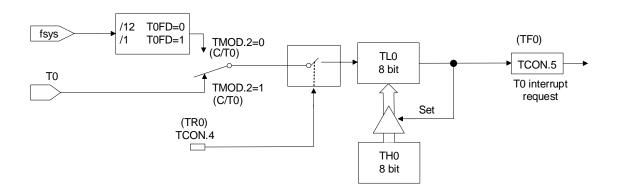
When applied as a timer, TOFD can be configured to select the frequency division ratio of the clock source.

Timer/counter operating mode 0: 13-bit timer/counter


Operating Mode 1: 16-bit Counter/Timer

Page 95 of 224 V1.0

Except for using a 16-bit (all 8-bit data of TL0 is valid) counters/timers, Mode 1 and Mode 0 operate in the same way. The way to open and configure the counter/timer is the same.


Timer/Counter Operating Mode 0: 16-bit Timer/Counter

Operating Mode 2: 8-bit Automatic Reload Counter/Timer

In operating mode 2, Timer 0 is an 8-bit auto-reload counter/timer. TL0 stores the count value, and TH0 stores the reload value. When the counter in TL0 overflows to 0x00, the timer overflow flag TF0 is set to 1, and the value of register TH0 is reloaded into register TL0. If the timer interrupt is enabled, an interrupt will be generated when TF0 is set to 1, but the reload value in TH0 will not change. Before allowing the timer to count correctly, TL0 must be initialized to the required value.

Except for the auto-reload function, the counter/timer in operating mode 2 is enabled and configured in the same way as in modes 0 and 1.

When used as a timer, the register TMCON.0 (T0FD) can be configured to select the ratio of the timer clock source divided by the system clock fsys.

Timer/counter operating mode 2: 8-bit timer/counter with automatic reload

Operating Mode 3: Two 8-bit Counters/Timers (Timer 0 Only)

Page 96 of 224 V1.0

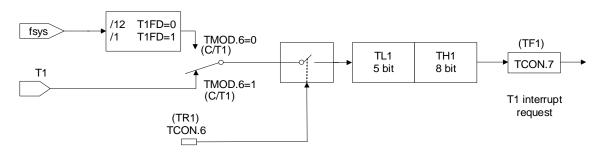
In operating mode 3, Timer 0 is used as two independent 8-bit counters/timers, which are controlled by TL0 and TH0, respectively. TL0 is controlled by timer 0 control bits (in TCON) and status bits (in TMOD): TR0, C/T0, TF0. Timer 0 can select the timer mode or counter mode through T0 TMOD.2 (C/T0).

TH0 sets related control by timer 1 control TCON, but TH0 is only limited to timer mode and cannot be set to counter mode by TMOD.2 (C/T0). TH0 is enabled by the control of the timer control bit TR1, and TR1=1 needs to be set. When an overflow occurs and an interrupt is generated, TF1 will be set to 1, and the interrupt will be processed according to T1.

When T0 is set to operating mode 3, the TH0 timer occupies the interrupt resources of T1 and the registers in TCON, and the 16-bit counter of T1 will stop counting, which is equivalent to "TR1=0". When using the TH0 timer to work, set TR1=1.

10.3 T1 Operating Mode

By setting M11 and M01 (TMOD[5], TMOD[4]) in the register TMOD, timer/counter 1 can realize three different operating modes.


Operating mode 0: 13-bit Timer/Counter

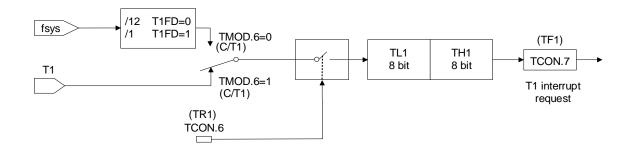
The TH1 register stores the upper 8 bits (TH1.7~TH1.0) of the 13-bit counter/timer; the TL1 stores the low 5 bits (TL1.4~TL1.0). The upper three bits of TL1 (TL1.7~TL1.5) are uncertain values and should be ignored when reading. When the 13-bit timer counter increments and overflows, the system sets the timer overflow flag TF1 to 1. If Timer 1 interrupt is enabled, an interrupt will be generated. The C/T1 bit selects the clock source of the counter/timer.

If C/T1=1, the level of timer 1 input pin T1 changes from high to low, which will increase the timer 1 data register by 1. If C/T1=0, select the frequency division of the system clock as the clock source of timer 1.

Set TR1 to enable the timer. Setting TR1 does not forcibly reset the timer, meaning that if TR1 is set to 1, the timer register will start counting from the value when TR1 was cleared to 0 last time. Therefore, before enabling the timer, the initial value of the timer register should be set.

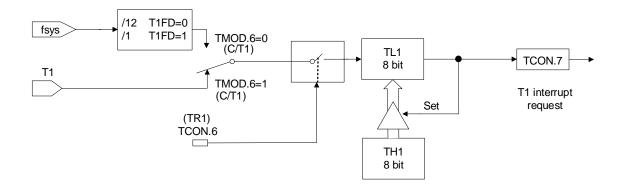
When applied as a timer, T1FD can be configured to select the frequency division ratio of the clock source.

Timer/counter operating mode 0: 13-bit timer/counter


Operating mode 1: 16-bit Counter/Timer

Except for using a 16-bit (all 8-bit data of TL1 is valid) counter/timer, Mode 1 and Mode 0 operate in the same way. The way to open and configure the counter/timer is the same.

Page 97 of 224 V1.0


Timer/counter operating mode 0: 16-bit timer/counter

Operating mode 2: 8-bit Automatic Reload Counter/Timer

In operating mode 2, Timer 1 is an 8-bit auto-reload counter/timer. TL1 stores the count value, and TH1 stores the reload value. When the counter in TL1 overflows to 0x00, the timer overflow flag TF1 is set to 1, and the value of register TH1 is reloaded into register TL1. If the timer interrupt is enabled, an interrupt will be generated when TF1 is set to 1, but the reload value in TH1 will not change. Before allowing the timer to count correctly, TL1 must be initialized to the required value.

Except for the auto-reload function, the counter/timer in operating mode 2 is enabled and configured in the same way as modes 0 and 1.

When used as a timer, the register TMCON.1 (T1FD) can be configured to select the ratio of the timer clock source divided by the system clock fsys.

Timer/counter operating mode 2: 8-bit timer/counter with automatic reload

Page 98 of 224 V1.0

11 Timer/Counter T2/T3/T4

Timer2/3/4 inside The SC95F852X MCU are three independent Timers, among which Timer2 has 4 operating modes, Timer3 and Timer4 have 3 operating mode.

The control registers of Timer2/3/4 share the same set of addresses (C8H-CDH), users can point the TimerX register set (TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX) to Timer2/3/4 through TXINX[2: 0] In order to realize the function of three independent Timers configured by a group of registers.

Note: Only after the TXINX[2: 0] configuration is successful, the TimerX register group will point to the Timer2/3/4 specified by the user. At this time, operating the TimeX register group is an effective operation for the corresponding Timer.

11.1 T2/3/4-related Registers

Symbol	Address	Description	7	6	5	4	3	2	1	0	POR
TXINX	CEH	Timer 2/3/4 control register pointer						xxxxx010b			
TXCON	C8H	Timer 2/3/4 control register	TFX	EXFX	RCLK X	TCL KX	EXEN X	TRX	C/TX	CP/RL X	00000000b
TXMOD	С9Н	Timer 2/3/4 operating mode register	TXF D	-	-	-	-	-	TXO E	DCXE N	0xxxxx00b
RCAPXL	CAH	Timer 2/3/4 reload low 8 bits	RCAPXL[7: 0]						00000000b		
RCAPXH	СВН	Timer 2/3/4 reload high 8 bits	RCAPXH[7: 0]						00000000b		
TLX	ССН	Timer 2/3/4 low 8 bits	TLX[7: 0]					00000000b			
тнх	CDH	Timer 2/3/4 high 8 bits	THX[7: 0]					00000000b			
TMCON	8EH	Timer frequency control register	USME	D2[1: 0]	-	-	-	-	T1FD	T0FD	00xxxx00b

TXINX (CEH) Timer 2/3/4 Control Register Pointer (read/write)

Page 99 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	TXINX[2: 0]		
R/W	-	-	-	-	-	R/W	R/W	R/W
POR	х	х	х	х	x	0	1	0

Bit number	Bit Mnemonic	Description
2~0	TXINX[2: 0]	Timer 2/3/4 control register pointer 010: TimerX register set: TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX points to T2 011: TimerX register set points to T3 100: TimerX register set points to T4 Other: reserved
7~3	-	Reserved

11.2 Timer2

Timer2 inside the SC95F852X MCU has two operating modes: counting mode and timing mode. There is a control bit C/TX in the special function register TXCON to select whether T2 is a timer or a counter. They are essentially an addition counter, but the source of the count is different. The source of the timer is the system clock or its divided clock, but the source of the counter is the input pulse of the external pin. TRX is the switch control of T2/T3/T4 counting in the timer/counter mode. Only when TRX=1, T2 will be opened for counting.

In counter mode, for every pulse on the T2 pin, the count value of T2 increases by 1 respectively.

In timer mode, the count source of T2 can be selected as fsys/12 or fsys through the special function register TXMOD.7 (TXFD).

Timer/counter T2 has 4 operating modes:

① Mode 0: 16-bit capture mode

2 Mode 1: 16-bit auto-reload timer mode

Page 100 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

- ③ Mode 2: Baud rate generator mode
- 4 Mode 3: Programmable clock output mod

TXINX[2: 0] = 010, the TimerX register group points to Timer2, the explanation of each register is as follows:

TXCON (C8H) Timer 2 Control Register (read/write) (TXINX[2: 0] = 010)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	TFX	Timer 2 overflow flag 0: No overflow (must be cleared by software) 1: Overflow (if RCLKX = 0 and TCLKX = 0, set by hardware 1)
6	EXFX	Flag bit detected by external event input (falling edge) of T2EX pin 0: No external event input (must be cleared by software) 1: External input detected (if EXENX = 1, set by hardware)
5	RCLKX	UART0 receive clock control bit 0: Timer 1 generates the receive baud rate 1: Timer 2 generates the receive baud rate
4	TCLKX	UART0 transmit clock control bit 0: Timer 1 generates transmission baud rate

Page 101 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		1: Timer 2 generates transmission baud rate
3	EXENX	T2EX pin is used as a reload/capture trigger enable/disable control: 0: Ignore events on T2EX pin 1: When Timer 2 is not used as the UART0 clock, a falling edge on the T2 pin is detected, and a capture or reload is generated
2	TRX	Timer 2 start/stop control bit 0: stop timer 2 1: Start timer 2
1	С/ТХ	Timer 2 Timer/counter mode selection positioning 2 0: Timer mode, T2 pin is used as I/O port 1: Counter mode
0	CP/RLX	Capture/reload mode selection positioning 0: 16-bit timer/counter with reload function 1: 16-bit timer/counter with capture function, TXEX is timer 2 external capture signal input port

TXMOD (C9H) Timer 2 Operating Mode Register (read/write) (TXINX[2: 0] = 010)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TXFD	-	-	-	-	-	TXOE	DCXEN
R/W	R/W	-	-	-	-	-	R/W	R/W
POR	0	х	х	х	х	х	0	0

Bit number	er Bit Mnemonic	Description
------------	-----------------	-------------

Page 102 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

7	TXFD	T2 input frequency selection control 0: T2 frequency is derived from fsys/12 1: T2 frequency is derived from fsys
1	TXOE	Timer 2 output enable bit 0: Set T2 as clock input or I/O port 1: Set T2 as the clock output
0	DCXEN	Count down enable bit 0: Timer 2 is prohibited as an up/down counter, Timer 2 is only used as an up counter 1: Allow Timer 2 as an up/down counter
6~2	-	Reserved

IE (A8H) Interrupt Enable Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
5	ET2	Timer2 interrupt enable control
		0: Disable Timer2 interrupt
		1: Enable Timer2 interrupt

Page 103 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

IP (B8H) Interrupt Priority Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
5	IPT2	Timer2 interrupt priority 0: Set the interrupt priority of Timer2 to "Low" 1: Set the interrupt priority of Timer2 to "High"

11.3 Timer3

Timer3 in SC95F852X MCU has two working modes: counting mode and timing mode. The special function register TXCON has a control bit C/TX to choose whether T3 is a timer or a counter. They are essentially an addition counter, just from different sources. The source of the timer is the system clock or its divider clock, but the source of the counter is the input pulse of the external pin. TRX is the switch control of T3 counting in timer/counter mode. Only when TRX=1, T3 will be turned on to count.

In counter mode, the count value of T3 increases by 1 for each pulse on T3 pin.

In timer mode, the count source of T3 can be selected as fsys/12 or fsys through the special function register TXMOD.7 (TXFD).

Timer/counter T3 has 3 operating modes:

Mode 0: 16-bit 16 capture mode

Mode 1: 16-bit auto-reload timer mode

Mode 2: programmable clock output mode

Page 104 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

TXINX[2: 0] = 011, the TimerX register group points to Timer3, the explanation of each register is as follows:

TXCON (C8H) Timer 3 Control Register (read/write) (TXINX[2: 0] = 011)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
POR	0	0	х	х	0	0	0	0

Bit number	Bit Mnemonic	Description
7	TFX	Timer 3 control register (read/write) Timer 3 overflow flag 0: No overflow (must be cleared by software) 1: Overflow (set by hardware 1)
6	EXFX	Flag bit that the T3 pin external event input (falling edge) is detected 0: No external event input (must be cleared by software) 1: External input detected (if EXENX = 1, set by hardware to 1)
3	EXENX	The external event input (falling edge) on the T3EX pin is used as a reload/capture trigger to allow/disable control: 0: Ignore events on T3EX pins 1: The T3EX is always connected to a pull-up resistor, which detects a falling edge on the T3EX pin, resulting in a capture or overload
2	TRX	Timer 3 start/stop control bit 0: stop timer 3 1: Start timer 3
1	с/тх	Timer 3 Timer/counter mode selected bit 0: Timer mode, T3 pin used as I/O port

Page 105 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		1: counter mode
0	CP/RLX	Capture/overload mode select bit 0: 16 bit timer/counter with overload function 1: 16 bit timer/counter with capture function, TXEX for timer 3 external capture signal input port
5~4	-	reserved

TXMOD (C9H) Timer 3 Operating Mode Register (read/write) (TXINX[2: 0] = 011)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TXFD		-	-	-	-	TXOE	DCXEN
R/W	R/W	-	-	-	-	-	R/W	R/W
POR	0	х	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
7	TXFD	T3 input frequency selection control 0: T3 frequency is derived from fsys/12 1: T3 frequency is derived from fsys
1	TXOE	Timer 3 outputs the allowed bit 0: Set T3 as the clock input or I/O port 1: Set T3 as the clock output
0	DCXEN	Decrement count allows bits 0: Disallow timer 3 as an increment/decrement counter, Timer 3 is used only as an increment counter

Page 106 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		1: Allow timer 3 as an increment/decrement counter
6~2	-	Reserved

IE1 (A9H) Interrupt Enable Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ET4	ET3	-	ETK	EINT2	EBTM	EPWM	ESSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	Х	0	0	0	0	0

Bit number	Bit Mnemonic	Description				
6 ET3		Timer3 interrupt enable control 0: Disable Timer3 interrupt 1: Enable Timer3 interrupt				

IP1 (B9H) Interrupt Priority Control Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	IPT4	IPT3	-	IPTK	IPINT2	IPBTM	IPPWM	IPSSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	Х	0	0	0	0	0

Page 107 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
6	IPT3	Timer3 interrupt priority selection 0: Timer3 interrupt priority is low 1: Timer3 interrupt priority is high

11.4 Timer4

Timer4 in SC95F852X microcontroller has two working modes: counting mode and timing mode. The special function register TXCON has a control bit C/TX to choose whether T4 is a timer or a counter. They are essentially an addition counter, just from different sources. The source of the timer is the system clock or its divider clock, but the source of the counter is the input pulse of the external pin. TRX is the on-off control of T4 counting in timer/counter mode. T4 will only be counted when TRX=1.

In counter mode, the T4 count increases by 1 for each pulse on the T4 pin.

In timer mode, the special function register TXMOD.7(TXFD) can be used to select whether the count source of T4 is $f_{SYS}/12$ or f_{SYS} .

Timer/counter T4 has 3 operating modes:

- ① Mode 0:16 bit capture mode
- 2) Mode 1:16 bit automatic overload timer mode
- 3 Mode 3: Programmable clock output mode

TXINX[2: 0] = 100, TimerX register group points to Timer4, the explanation of each register is as follows:

TXCON (C8H) Timer 4 Control Register (read/write) (TXINX[2: 0] = 100)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
POR	0	0	х	х	0	0	0	0

Page 108 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
7	TFX	Timer 4 overflow flag 0: No overflow (must be cleared by software) 1: Overflow (set by hardware 1)
6	EXFX	The flag bit that the external event input (falling edge) of the T4 pin is detected 0: No external event input (must be cleared by software) 1: External input detected (if EXENX = 1, set by hardware to 1)
3	EXENX	The external event input (falling edge) on the T4EX pin is used as a reload/capture trigger to allow/disable control: 0: Ignore events on T4EX pins 1: The T4EX is always connected to a pull-up resistor, which detects a falling edge on the T4EX pin, resulting in a capture or overload
2	TRX	Timer 4 start/stop control bit 0: stop timer 4 1: Start timer 4
1	С/ТХ	Timer 4 Timer/counter mode selected bit 0: Timer mode, T4 pin used as I/O port 1: counter mode
0	CP/RLX	Fixed write 0
5~4	-	Reversed

TXMOD (C9H) Timer 4 Operating Mode Register (read/write) (TXINX[2: 0] = 100)

Bit number 7 6 5 4 3 2 1 0
--

Page 109 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	TXFD	-	-	-	-	-	TXOE	DCXEN
R/W	R/W	-	-	-	-	-	R/W	R/W
POR	0	х	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
7	TXFD	T4 input frequency selection control 0: T4 frequency is derived from fsys/12 1: T4 frequency is derived from fsys
1	TXOE	Timer 4 outputs the allowed bit 0: Set T4 as the clock input or I/O port 1: Set T4 as the clock output
0	DCXEN	Decrement count allows bits 0: Disallow timer 4 as an increment/decrement counter and timer 4 as an increment counter only, Timer 4 is used only as an increment counter 1: Allow timer 4 as an increment/decrement counter
6~2	-	Reversed

IE1 (A9H) Interrupt Enable Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ET4	ET3	-	ETK	EINT2	EBTM	EPWM	ESSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Page 110 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR	0	0	Х	0	0	0	0	0
-----	---	---	---	---	---	---	---	---

Bit number	Bit Mnemonic	Description
7	ET4	Timer4 interrupt enable control 0: Disable Timer4 interrupt 1: Enable Timer4 interrupt

IP1 (B9H) Interrupt Priority Control Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	IPT4	IPT3	-	IPTK	IPINT2	IPBTM	IPPWM	IPSSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	Х	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	IPT4	Timer4 interrupt priority selection 0: Timer4 interrupt priority is low 1: Timer4 interrupt priority is hig

11.5 T2/3/4 Operating Modes

Timer T2 has four operating modes:

① Mode 0: 16-bit capture

Page 111 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

(2) Mode 1: 16-bit auto-reload timer

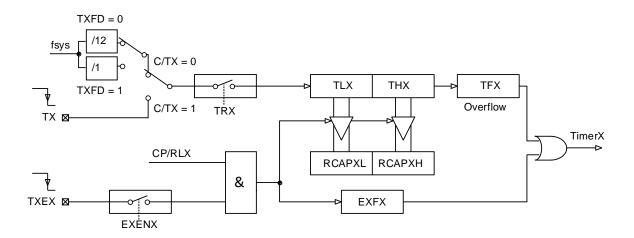
3 Mode 2: Baud rate generator

4 Mode 3: Programmable clock output

The operating mode and configuration mode of timer 2 are as follows:

С/ТХ	ТХОЕ	DCXEN	TRX	CP/RLX	RCLKX	TCLKX		Mode
Х	0	Х	1	1	0	0	0	16-bit capture
х	0	0	1	0	0	0	1	16-bit auto-reload timer
Х	0	1	1	0	0	0		
X	0	Х	1	Х	1	Х	2	Baud rate generator
					Х	1		(only Timer2)
0	1	Х	1	Х	0	0	3	Only for programmable clock
					1	Х	3	Programmable clock output with baud rate generator
					Х	1		
Х	х	х	0	х	Х	Х	Х	Timer stops, TnEX(n=2/3/4) channel is still allowed
1	1	Х	1	Х	Х	Х		Not recommended

11.5.1 Operating Mode 0: 16-bit Capture


In the capture mode, the EXENX bit of TXCON has two options.

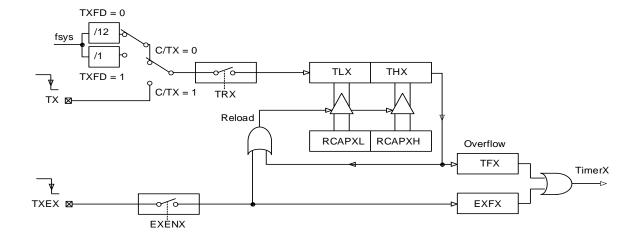
If EXENX = 0, Timer T_n (n=2/3/4) acts as a 16-bit timer or counter. If ETn is enabled, T_n can set TFX overflow to generate an interrupt.

If EXENX = 1, Timer T_n (n=2/3/4) performs the same operation, but the falling edge on external input TnEX can also cause the current values in THX and TLX to be captured in RCAPXH and RCAPXL, respectively. In addition,

Page 112 of 224 V1.0

the falling edge on TnEX also Can cause EXFX in TXCON to be set. If ETn is enabled, the EXFX bit also generates an interrupt like TFX.

Mode 0: 16-bit capture


11.5.2 Operating Mode 1: 16-bit Auto-Reload Timer

In 16-bit auto-reload mode, Timer T_n (n=2/3/4) can be selected to count up or count down. This function is selected by the DCEN bit (down counting allowed) in TXMOD. After the system is reset, the reset value of the DCEN bit is 0, and the T_n counts up by default. When DCEN is set to 1, T_n counts up or down depending on the level on the TnEX pin.

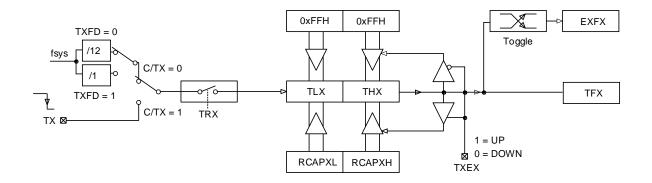
When DCEN = 0, two options are selected through the EXENX bit in TXCON.

If EXENX = 0, T_n increments to 0xFFFFH, sets the TFX bit after overflow, and the timer automatically loads the 16-bit values of registers RCAPXH and RCAPXL written in user software into the THX and TLX registers.

If EXENX = 1, an overflow or a falling edge on TnEX can trigger a 16-bit reload and set the EXFX bit. If ETn is enabled, both TFX and EXFX bits can generate an interrupt.

Page 113 of 224 V1.0

http://www.socmcu.com


Mode 1: 16-bit auto-reload DCEN = 0

Setting the DCEN bit allows Tn (n=2/3/4) to count up or down. When DCEN = 1, the TnEX pin controls the direction of the count, and EXENX control is invalid.

Setting TnEX causes Tn to count up. The timer overflows to 0xFFFFH, and then sets the TFX bit. Overflow can also cause the 16-bit values on RCAPXH and RCAPXL to be reloaded into the timer register, respectively.

Setting TnEX to 0 causes Tn to count down. When the values of THX and TLX are equal to the values of RCAPXH and RCAPXL, the timer overflows. The TFX bit is set and 0xFFFFH is reloaded into the timer register.

Regardless of whether Tn overflows or not, the EXFX bit is used as the 17th bit of the result. In this operating mode, EXFX is not used as an interrupt flag.

Mode 1: 16-bit auto-reload DCEN = 1

11.5.3 Operating Mode 2: Baud Rate Generator

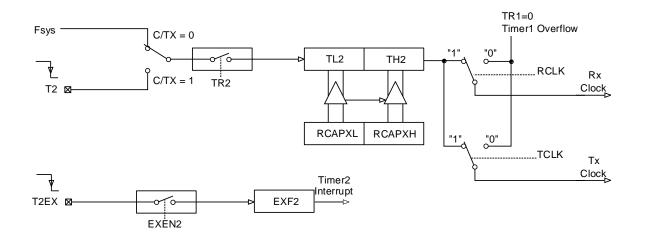
Set TCLK and/or RCLKX in the TXCONX register to select Timer 2 as the baud rate generator. The baud rate of the receiver and transmitter can be different. If Timer 2 acts as a receiver or transmitter, then Timer 1 acts as another baud rate generator

Set TCLK and/or RCLKX in the TXCONX register to make Timer 2 enter the baud rate generator mode, which is similar to the automatic reload mode

The overflow of Timer 2 will reload the values in the RCAPXH and RCAPXL registers to the Timer 2 count, but no interrupt will be generated

If EXENX is set to 1, the falling edge on the T2EX pin will set up EXFX, but it will not cause a heavy load. So when Timer 2 is used as a baud rate transmitter, T2EX can be used as an additional external interrupt

The baud rate in UART0 mode 1 and 3 is determined by the overflow rate of timer 2 according to the following equation:


$$BaudRate = \frac{fsys}{[RCAPXH,RCAPXL]}; (Note: [RCAPXH, RCAPXL] \text{ must be bigger than } 0x0010)$$

Page 114 of 224 V1.0

The schematic diagram of Timer 2 as a baud rate generator is as follows:

Mode 2: Baud rate generator

11.5.4 Operating Mode 3: Programmable Clock Output

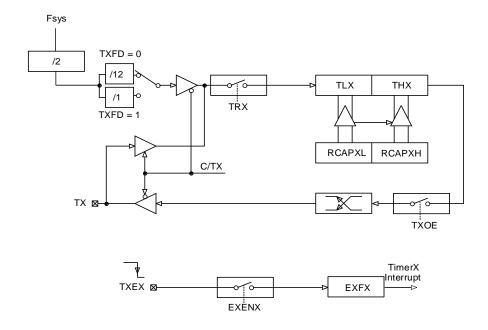
In this way, T2(P0.7)/T3(P0.1)/T4(P2.5) can be programmed to output a 50% duty cycle clock cycle: when C/TX = 0; TXOE = 1, Tn (n=2/3/4) is enabled as a clock generator

In this way, Tn outputs a clock with a 50% duty cycle

Colck Out Frequency =
$$\frac{\text{ftn}}{(65536-[\text{RCAPXH,RCAPXL}])\times 4}$$
;

Among them, ftn is the Tn (n=2/3/4) clock frequency:

$$ftn = \frac{fsys}{12}$$
; TXFD = 0


$$ftn = fsys; TXFD = 1$$

Tn overflow does not generate an interrupt, and the T2(P0.7)/ T3(P0.1)/ T4(P2.5) port is used as a clock output.

Page 115 of 224 V1.0

Mode 3: Programmable clock output

Note:

- 1. Both TFX and EXFX can cause the interrupt request of Tn (n=2/3/4), both have the same vector address;
- 2. When the event occurs or at any other time, TFX and EXFX can be set to 1 by software, and only software and hardware reset can clear it to 0;
- 3. When EA = 1 and ETn = 1, setting TFX or EXFX to 1 can cause Tn to interrupt;
- 4. When Timer 2 is used as a baud rate generator, writing THX/TLX or RCAPXH/RCAPXL during UART0 communication will affect the accuracy of the baud rate and cause communication errors.

Page 116 of 224 V1.0

12 Multiplier-Divider Unit (MDU)

The SC95F852X provides a 16-bit multiplier and divider, which consists of extended accumulators EXA0~EXA3, extended B register EXB and operation control register OPERCON. Can replace software for 16 x 16 bit multiplication and 32 /16 bit division.

The SC95F852X hardware multiplier and divider does not occupy CPU cycles, and the operation is implemented by hardware. The speed is dozens of times faster than the software implementation of multiplication and division. It can replace software for 16-bit \times 16-bit multiplication and 32-bit/16-bit division and increase program running efficiency.

Symbol	Address	Description	7	6	5	4	3	2	1	0	POR
EXA0	E9H	Extended Accumulator 0	EXA [7: 0]					00000000Ь			
EXA1	EAH	Extended Accumulator 1		EXA [15: 8]						00000000b	
EXA2	ЕВН	Extended Accumulator 2		EXA [23: 16]							00000000b
EXA3	ECH	Extended Accumulator 3				EXA [[31: 24]				00000000b
EXBL	EDH	Extended B register L		EXB [7: 0]						0000000b	
EXBH	EEH	Extended B register H	EXB [15: 8]						00000000b		
OPERC ON	EFH	Operation control register	OPE RS	MD	-	-	-	-	CRCR ST	CRCS TA	00xxxx00b

OPERCON (EFH) Operation control register (read/write)

Bit number	7	6	5	4	3	2	1	0
------------	---	---	---	---	---	---	---	---

Page 117 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit Mnemonic	OPERS	MD	-	-	-	-	CRCRST	CRCSTA
R/W	R/W	R/W	-	-	-	-	R/W	R/W
POR	0	0	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description									
7	OPERS	Write "1" to this bit is, this bit is just th start calculation. W	Multiplier-divider operation start trigger control (Operater Start) Write "1" to this bit to start a multiplication and division calculation, that is, this bit is just the trigger signal for the multiplication and division to start calculation. When the bit is zero, it means that the calculation has been completed. This bit can only be written to 1 valid.								
6	MD	Multiplication and d 0: Multiplication operand the product is in	eration. The		and multiplier	are written					
		Byte Operand	Byte 3	Byte 2	Byte 1	Byte 0					
		multiplicand 16bit	-	-	EXA1	EXA0					
		multiplier 16bit	-	-	EXBH	EXBL					
		multiplier 32bit	EXA3	EXA2	EXA1	EXA0					
		Divide operation, write the dividend and divisor, read the quotient and remainder as follows:									
		Byte Operand	Byte 3	Byte 2	Byte 1	Byte 0					

Page 118 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		dividend 32bit	EXA3	EXA2	EXA1	EXA0	
		divisor 16bit		1	1	EXBH	EXBL
		quotient 32bit	EXA3	EXA2	EXA1	EXA0	
		remainder 16bit	-	-	EXBH	EXBL	

Note:

- 1. It is forbidden to perform read or write operations on the EXA and EXB data registers during the calculation operation.
- 2. The time required for the operation conversion of the multiplier-divider is 16/fsys.

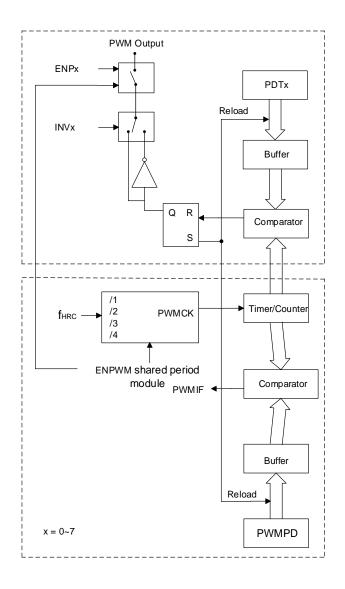
Page 119 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

13 PWM

The SC95F852X provides 16-bit PWM with up to 8 shared cycles and individually adjustable duty cycle.

The functions of the PWM of the SC95F852X are as follows:


- 1 16-bit PWM accuracy;
- (2) The output waveform can be reversed;
- Type: Can be set to center-aligned or edge-aligned;
- 4 Mode: can be set to independent mode or complementary mode:
 - 1) In independent mode, the 8 PWM cycles are the same, but the duty cycle of each PWM output waveform can be set separately;
 - 2) In complementary mode, four sets of complementary PWM waveforms with dead zones can be output simultaneously;
- 5 Provide one PWM overflow interrupt;
- (6) Support fault detection mechanism.

The PWM of the SC95F852X can support the adjustment of period and duty cycle. The registers PWMCFG and PWMCON0 and PWEMCON1 control the state and period of PWM. The opening of each PWM and the output waveform duty cycle can be adjusted separately.

Page 120 of 224 V1.0

13.1 PWM Structure Diagram

SC95F852X PWM Structure diagram

Page 121 of 224 V1.0 http://www.socmcu.com

13.2 PWM General Configuration Register

13.2.1 PWM General Configuration Register

The user can set the PWM output mode of SC95F852X to independent mode or complementary mode by configuring PWMMD[1: 0]. In independent mode, the 8 PWM cycles are the same, but the duty cycle of each PWM output waveform can be set separately. In complementary mode, four complementary PWM waveforms with dead zones can be output simultaneously.

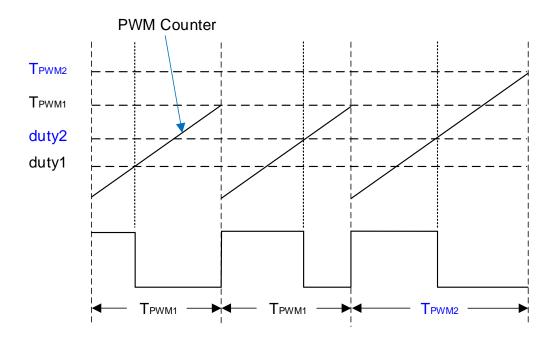
The PWM type of SC95F852X is divided into edge-aligned type and center-aligned type:

Edge-aligned:

The PWM counter starts counting from 0, and when the count value matches the value of the duty cycle setting item PDTx [15: 0], the PWM output waveform switches between high and low levels, and then the PWM counter continues to count up until it matches the period setting item PWMPD[15: 0] The value of +1 matches (the end of a PWM period), the PWM counter is cleared, if the PWM interrupt is enabled, a PWM interrupt will be generated at this time.

The output PWM waveform is aligned on the left edge.

Calculation formula of edge-aligned period TPWM:


$$Tpwm = \frac{PWMPD[15: 0] + 1}{PWM Clock frequency}$$

Edge-aligned duty duty calculation formula:

$$duty = \frac{PDTxy [15: 0]}{PWMPD[15: 0] + 1}$$

The edge-aligned waveform is as follows:

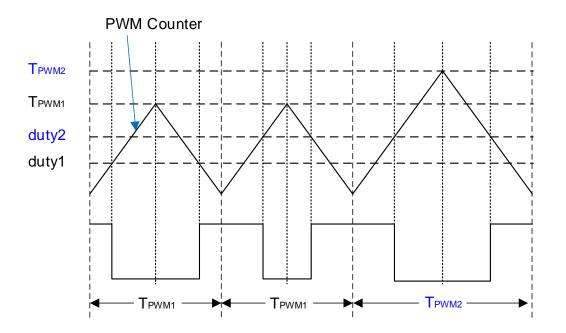
Page 122 of 224 V1.0

Edge-aligned PWM

Center-aligned type:

The PWM counter starts counting from 0. When the count value matches the value of the duty cycle setting item PDTx [15: 0], the PWM output waveform switches between high and low levels. Then the PWM counter continues to count up. When the count value matches the period setting item PWMPD [15: 0] When the value of +1 matches (that is, the midpoint of the PWM cycle), it automatically starts to count down. When the count value matches the value of PDTxy [11: 0] again, the PWM output waveform switches high and low again, and then The PWM counter continues to count down until it overflows (the end of a PWM period). If the PWM interrupt is enabled, a PWM interrupt will be generated at this time.

Calculation formula of center-aligned period T_{PWM}:


$$Tpwm = 2 * \frac{PWMPD[15:0] + 1}{PWM Clock frequency}$$

Center-aligned duty duty calculation formula:

$$duty = \frac{PDTx [15: 0]}{PWMPD[15: 0] + 1}$$

The center aligned waveform is as follows:

Page 123 of 224 V1.0

Center-aligned PWM

The above modes and types can be set through the PWMCON0 register:

PWMCON0 (D2H) PWM Control Register Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ENPWM	PWMIF	PWMCK[1:0]			•	PWMM D[1:0]	ENPWM
R/W	R/W	R/W	R/W	R/W	-	-	R/W	R/W
POR	0	0	0	0	х	х	0	0

Bit number	Bit Mnemonic	Description
7	ENPWM	PWM Module Switch control (Enable PWM)
		1: Clock is allowed to enter the PWM unit, PWM is in working state, PWM output state is controlled by register ENPWMx (x=0~7)

Page 124 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		0: THE PWM unit stops working, the PWM counter is cleared to zero, and all PWM outputs are set to GPIO state
6	PWMIF	PWM Interrupt Flag This bit is automatically set to 1 by the hardware when the PWM counter overflows (that is, when the count exceeds the PWMPD). If IE1[1] (EPWM) is also set to 1, the PWM interrupts. After the PWM interrupt occurs, the hardware does not automatically clear this bit, this bit must be cleared by the user's software.
5~4	PWMCK[1:0]	PWM Clock Source Selector 00: fHRC 01: fHRC / 2 10: fHRC / 4 11: fHRC / 8 Note: the clock source frequency of PWM is fixed as fHRC = 32MH
1~0	PWMMD[1:0]	Set the PWM working mode 0x: independent mode 1x: complementary mode X0: edge alignment mode X1: Center alignment mod
3~2	-	Reversed

PWMCFG (D1H) PWM Setting Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	INV7	INV6	INV5	INV4	INV3	INV2	INV1	INV0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Page 125 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR 0

Bit number	Bit Mnemonic	Description
6	INVx (x=0~7)	PWMx waveform output reverse control 1: The PWMx waveform output is reversed 0: indicates that the PWMx waveform output is not reversed

PWMCON1 (D3H) PWM Control Register 1 (读/写)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EPWM7	EPWM6	EPWM5	EPWM4	EPWM 3	EPWM2	EPWM 1	EPWM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	ENPWMx	PWMx waveform output selection
	(x=0~7)	O: PWMx output is turned off and used as GPIO port ¹ 1: When ENPWM is 1, the I/O where PWMx resides serves as the waveform output port

Note:

1. If ENPWM is set to 1, the PWM module is turned on, but ENPWMx=0, and the PWM output is turned off as a GPIO port. In this case, the PWM module can be used as a 16-bit Timer. When EPWM(IE1.1) is set to 1, the PWM will still interrupt

Page 126 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

PWMPDL (D4H) PWM cycle register low 8 bits (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				PWMP	DL[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PWMPDH (D5H) PWM cycle register high 8 bits (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic		PWMPDH[7:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	PWMPD[15:0]	Period setting for PWM sharing This value represents the PWM output waveform (period - 1); In other words, the cycle value of PWM output is (PWMPD[15:0] + 1) * PWM clock;

IE1 (A9H) INTERRUPT ENABLE REGISTER 1 (读/写)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ET4	ЕТ3	-	ETK	EINT2	EBTM	EPWM	ESSI0

Page 127 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	x	0	0	0	0	0

Bit number	Bit Mnemonic	Description
1	EPWM	PWM interrupt enable control 0: disables PWM interruption 1: allows interruption when PWM counter overflows

IP1 (B9H) INTERRUPT PRIORITY CONTROL REGISTER 1 (读/写)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	IPT4	IPT3	-	IPTK	IPINT2	IPBTM	IPPWM	IPSSI0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	0	0	x	0	0	0	0	0

Bit number	Bit Mnemonic	Description
1	IPPWM	PWM interrupt priority selection 0: Set interrupt priority of PWM to "low" 1: Set the INTERRUPT priority of PWM to "high"

Page 128 of 224 V1.0

13.2.2 PWM Fault Detection Function Setting

The fault detection function is often applied to the protection of motor systems. When the fault detection function is enabled, FLTEN1 (PWMFLT.7) is set to 1, and the fault detection signal input pin (FLT) becomes effective. When the signal of the FLT pin meets the fault condition, the flag bit FLTSTA1 is set by hardware, the PWM counter stops counting, and the PWM output stops. The fault detection mode is divided into latch mode and immediate mode; in immediate mode, when the fault signal on the FLT pin meets the disabling condition, the flag FLTSTA1 is cleared by hardware, and the PWM counter resumes counting until the PWM counter returns to zero. Output; In the latch mode, when the fault signal on the FLT pin meets the disabling condition, the status of the FLTSTA1 flag remains unchanged, and the user can clear it through software. Once the FLTSTA1 status is cleared, the PWM counter resumes counting until the PWM counter returns The PWM resumes output after zero. The fault detection mode is divided into latch mode and immediate mode. The specific configuration methods are as follows:

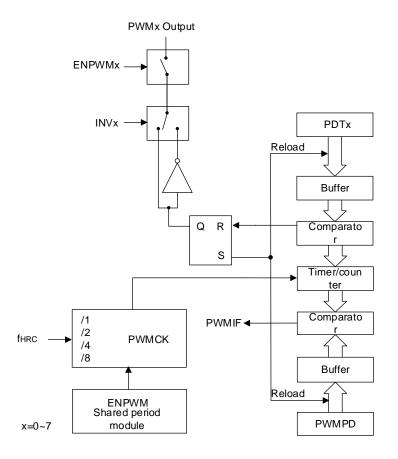
PWMFLT (D7H) PWM Fault Detection Setting Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	FLTEN1	FLTSTA1	FLTMD1	FLTLV1	-	-	FLTDT	⁻ 1[1: 0]
R/W	R/W	R/W	R/W	R/W	-	-	R/W	R/W
POR	0	0	0	0	х	х	0	0

Bit number	Bit Mnemonic	Description
7	FLTEN1	PWM fault detection function control bit 0: failure detection function is off 1: The fault detection function is turned on
6	FLTSTA1	PWM fault detection status flag 0: PWM is in normal output state; 1: Fault detection is valid, the PWM output is in a high-impedance state, if in latch mode, this bit can be cleared by software
5	FLTMD1	PWM fault detection mode setting bit

Page 129 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU


		O: Latch mode, when the fault input is valid, FLTSTA1 is set to "1", the PWM stops outputting, and the FLTSTA1 state remains unchanged when the fault input is invalid 1: Immediate mode: When the fault input is valid, FLTSTA1 is set to "1" and the PWM stops outputting. When the fault input is invalid, the state of FLTSTA1 is cleared immediately, and the PWM waveform will resume output when the PWM time base counter returns to zero
4	FLTLV1	PWM fault detection level selection bit
		0: Low level of fault detection is effective
		1: High level of fault detection is effective
1~0	FLTDT1[1: 0]	PWM fault detection input signal filtering time setting
		00: filtering time is 0
		01: filtering time is 1us
		10: filter time is 4us
		11: The filtering time is 16us
3~2	-	Reserved

Page 130 of 224 V1.0

13.3 PWM Independent Mode

In independent mode (PWMMOD.1 = 0), the duty cycle of 8 PWM channels can be set independently. The user configures the PWM output status and period, and then configures the duty cycle register of the corresponding PWM channel to output the PWM waveform at a fixed duty cycle.

13.3.1 PWM Independent Mode Block Diagram

SC95F852X PWM Independent mode block diagram

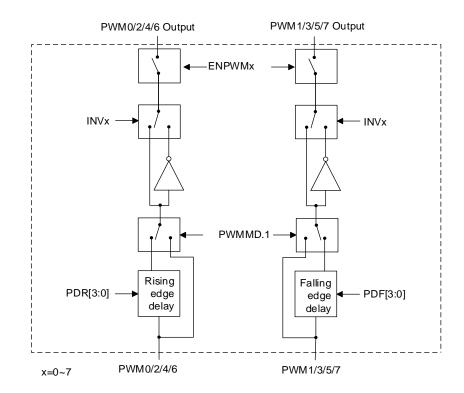
Page 131 of 224 V1.0

13.3.2 PWM Independent Mode Duty Cycle Configuration

PWM Duty Cycle Adjustment Register PDTx (Read/Write)

Add	7	6	5	4	3	2	1	0	POR
1040H		PDT0[15:8]							0000000b
1041H				PDT0	[7:0]				0000000b
1042H				PDT1[15:8]				0000000b
1043H				PDT1	[7:0]				0000000b
1044H				PDT2[15:8]				0000000b
1045H				PDT2	[7:0]				0000000b
1046H				PDT3[15:8]				0000000b
1047H				PDT3	[7:0]				0000000b
1048H				PDT4[15:8]				0000000b
1049H				PDT4	[7:0]				0000000b
104AH				PDT5[15:8]				0000000b
104BH				PDT5	[7:0]				0000000b
104CH		PDT6[15:8]					0000000b		
104DH		PDT6[7:0]						0000000b	
104EH		PDT7[15:8]						0000000b	
104FH				PDT7	[7:0]				00000000ь

Page 132 of 224 V1.0


Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
3~0	PDTx [15:8] (x=0~7)	PWMx waveform duty cycle length setting The high level width of the PWMx waveform is (PDTx [15:0]) PWM clock

Page 133 of 224 V1.0

13.4 PWM Complementary Model

13.4.1 PWM Block Diagram of Complementary Mode

SC95F852X PWM block diagram of complementary mode

13.4.2 PWM Complementary Mode Duty Cycle Configuration

In complementary mode (PWMMD[1:0] = 1x), PWM0/PWM1, PWM2/PWM3, PWM4/PWM5 and PWM6/PWM7 are divided into four groups. Duty cycle was adjusted by PDT0[15:0], PDT2[15:0], PDT4[15:0] and PDT6[15:0] respectively.

In complementary mode, registers PDT0[15:0], PDT2[15:0], PDT4[15:0] and PDT5[15:0] are invalid.

PWM Duty Cycle Adjustment Register PDTx (Read/Write)

Add	7	6	5	4	3	2	1	0	POR		
1040H		PDT0[15:8]									
1041H		PDT0[7:0]									

Page 134 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

1042H	PDT1[15:8]	0000000b
1043H	PDT1[7:0]	0000000b
1044H	PDT2[15:8]	0000000b
1045H	PDT2[7:0]	0000000b
1046H	PDT3[15:8]	0000000b
1047H	PDT3[7:0]	0000000b
1048H	PDT4[15:8]	0000000b
1049H	PDT4[7:0]	0000000b
104AH	PDT5[15:8]	0000000b
104BH	PDT5[7:0]	0000000b
104CH	PDT6[15:8]	0000000b
104DH	PDT6[7:0]	0000000b
104EH	PDT7[15:8]	0000000b
104FH	PDT7[7:0]	0000000b

Bit number	Bit Mnemonic	Description
7~0	PDTx [7:0]	PWMx and PWMy, y = x + 1 mouth PWM waveform duty cycle length
	(x=0,2,4,6)	setting Px and Py pin on the high level width of the PWM waveform is (PDTx [15:0]) PWM clock

Page 135 of 224 V1.0

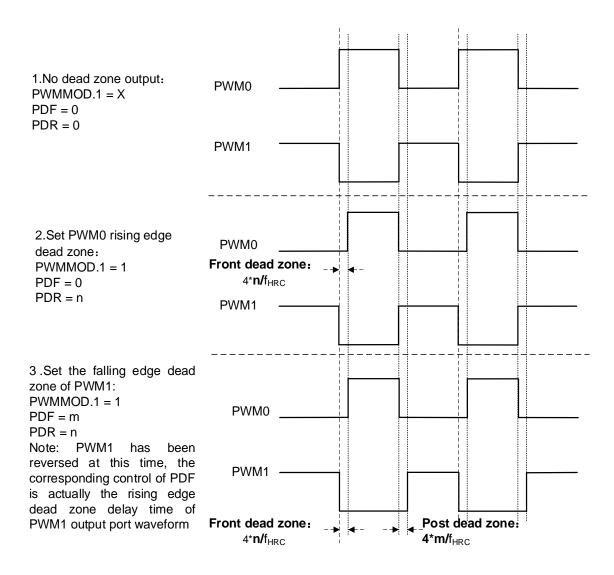
13.4.3 PWM Complementary Mode Dead Time Setting

When the PWM of the SC95F852X works in complementary mode, the dead zone control module can prevent the effective time zones of the two PWM signals of complementary outputs from overlapping each other, so as to ensure that a pair of complementary power switch tubes driven by PWM signals will not be turned on at the same time. .

PWMDFR (D6H) PWM Dead Time Setting Register (read/write)

Bit number	7	6	5	4	3	2	1	0	
Bit Mnemonic		PDF	[3: 0]		PDR[3: 0]				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
POR	0	0	0	0	0	0	0	0	

Bit number	Bit Mnemonic	Description
7~4	PDF[3: 0]	Complementary mode: PWM falling edge dead time= 4*PDF[3: 0] / f _{HRC}
3~0	PDR[3: 0]	Complementary mode: PWM rising edge dead time= 4*PDR[3: 0] / f _{HRC}


13.4.4 PWM Dead Zone Output Waveform

The following figure is based on the PWM0 and PWM1 in the complementary mode of the dead time adjustment waveform, in order to facilitate the distinction, PWM1 has reversed (INV1=1).

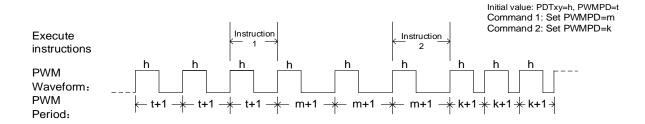
Page 136 of 224 V1.0

PWM dead zone output waveform

13.5 PWM Waveforms and Directions

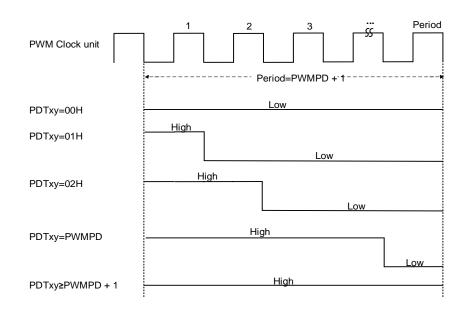
The effect of changing SFR parameters on the PWM waveform is as follows:

1 Duty cycle change characteristics


When the PWMn outputs a waveform, if the duty cycle needs to be changed, it can be achieved by changing the value of the high-level setting register (PDTx). But need to pay attention: change the value of PDTx, the duty ratio will not change immediately, but wait for the end of this cycle and change it in the next cycle.

② Periodic change characteristics

Page 137 of 224 V1.0


Super High-Speed Low Power Consumption Flash MCU

Periodic change characteristic diagram

When the PWM outputs a waveform, if the period needs to be changed, it can be achieved by changing the value of the period setting register PWMPD. Change the value of PWMPD, the cycle will not change immediately, but wait for the end of the cycle, and change in the next cycle, refer to the figure above.

3 Relationship between period and duty cycle

Relationship between cycle and duty cycle

The relationship between period and duty cycle is shown in the figure above. The premise of this result is that the PWM output inverse control (INVx) is initially 0. If you want to get the opposite result, you can set INVx to 1.

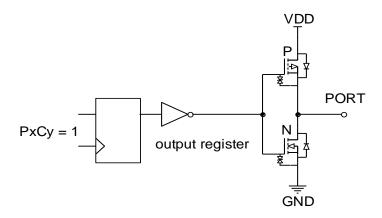
Page 138 of 224 V1.0

14 General-purpose I/O (GPIO)

The SC95F852X provides up to 26 bidirectional GPIO ports that can be controlled. The input and output control registers are used to control the input and output status of each port. When the port is used as an input, each I/O port has an internal pull-up resistor controlled by PxPHy. The 26 IOs are multiplexed with other functions. When the I/O port is in the input or output state, the actual state value of the port is read from the port data register.

Note: The unused and unleaded IO ports should be set to strong push-pull output mode.

14.1 GPIO Structure Diagram


Strong Push-pull Output Mode

In the strong push-pull output mode, it can provide continuous high-current drive:

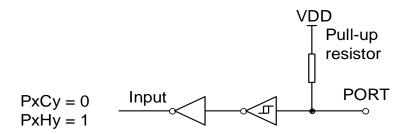
Except for P05/P20, the I/o driver has high output if the output is greater than 10mA, and low output if the output is greater than 50mA.

The driving capacity of P05/P20 is: the output greater than 20mA is high, and the output greater than 50mA is low.

The schematic diagram of the port structure of the strong push-pull output mode is as follows:

Strong push-pull output mode

Pull-up Input Mode


In the pull-up input mode, a pull-up resistor is constantly connected to the input port. Only when the input port is pulled low, the low-level signal is detected.

The schematic diagram of the port structure with pull-up input mode is as follows:

Page 139 of 224 V1.0

Input mode with pull-up resistor

High Impedance Input Mode (Input only)

The schematic diagram of the port structure of the high impedance input mode is as follows:

High impedance input mode

Page 140 of 224 V1.0

14.2 I/O Port-related Registers

P0CON (9AH) P0 Port Input/Output Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P0PH (9BH) P0 Port pull-up Resistor Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	Р0Н0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P1CON (91H) P1 Port Input/Output Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Page 141 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

P1PH (92H) P1 Port Pull-up Resistor Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P2CON (A1H) P2 Port Input/output Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P2PH (A2H) P2 Port Pull-up Resistor Control Register (read/write)

位编号	7	6	5	4	3	2	1	0
Bit Mnemonic	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Page 142 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

P5CON (D9H) P5 Port Input/output Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	-	P5C1	P5C0
R/W	-	-	-	-	-	-	R/W	R/W
POR	х	х	х	х	x	х	0	0

P5PH (DAH) P5 Port Pull-up Resistor Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	-	P5H1	P5H0
R/W	-	-	-	-	-	-	R/W	R/W
POR	х	х	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description					
7~0	PxCy (x=0~5, y=0~7)	Px port input and output control: 0: Pxy is the input mode (initial value at power-on) 1: Pxy is a strong push-pull output mode					
7~0	PxHy (x=0~5, y=0~7)	The Px port pull-up resistor setting is only valid when PxCy=0: 0: Pxy is the high-impedance input mode (initial value at power-up), and the pull-up resistor is turned off; 1: Pxy pull-up resistor is on					

Page 143 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

P0 (80H) P0 Port Data Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P1 (90H) P1 Port Data Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

P2 (A0H) P2 Port Data Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Page 144 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

P5 (D8H) P5 Port Data Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	-	P5.1	P5.0
R/W	-	-	-	-	-	-	R/W	R/W
POR	х	х	х	x	x	x	0	0

Bit number	Bit Mnemonic	Description
7~0	P0.x (x=0~7)	P0 port latch register data
7~0	P1.x (x=0~7)	P1 port latch register data
7~0	P2.x (x=0~7)	P2 port latch register data
5~0	P5.x (x=0~5)	P5 port latch register data

IOHCON0 (96H) IOH Setting Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	P1H	[1: 0]	P1L[[1: 0]	P0H	[1: 0]	P0L[[1: 0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Page 145 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~6	P1H[1: 0]	P1 high four IOH settings 00: Set P1 high four IOH level 0 (maximum);
		01: Set P1 high four IOH level 1;
		10: Set P1 high four IOH level 2;
		11: Set P1 high four IOH level 3 (minimum);
5~4	P1L[1: 0]	P1 low four IOH settings
		00: Set P1 low four IOH level 0 (maximum);
		01: Set P1 low four IOH level 1;
		10: Set P1 low four IOH level 2;
		11: Set P1 low four IOH level 3 (minimum);
3~2	P0H[1: 0]	P0 high four IOH settings
		00: Set P0 high four IOH level 0 (maximum);
		01: Set P0 high four IOH level 1;
		10: Set P0 high four IOH level 2;
		11: Set P0 high four IOH level 3 (minimum);
1~0	P0L[1: 0]	P0 low four IOH settings
		00: Set P0 low four IOH level 0 (maximum);
		01: Set P0 low four IOH level 1;
		10: Set P0 low four IOH level 2;
		11: Set P0 low four IOH level 3 (minimum);

Page 146 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

IOHCON1 (97H) IOH Setting Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	P5L[[1: 0]	P2H	[1: 0]	P2L[[1: 0]
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
POR	х	х	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
5~4	P5L[1: 0]	P5 low four IOH settings 00: set P5 low four IOH level 0 (maximum); 01: Set P5 low four IOH level 1; 10: Set P5 low four IOH level 2; 11: Set P5 low four IOH level 3 (minimum);
3~2	P2H[1: 0]	P2 high four IOH settings 00: Set P2 high four IOH level 0 (maximum); 01: Set P2 high four IOH level 1; 10: Set P2 high four IOH level 2; 11: Set P2 high four IOH level 3 (minimum);
1~0	P2L[1: 0]	P2 low four IOH settings 00: Set P2 low four IOH level 0 (maximum); 01: Set P2 low four IOH level 1; 10: Set P2 low four IOH level 2; 11: Set P2 low four IOH level 3 (minimum);
7~6	-	Reserved

Page 147 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Page 148 of 224 V1.0

http://www.socmcu.com

15 UARTO

The SC95F852X supports a full-duplex serial port, which can be conveniently used for connection with other devices or equipment, such as Wifi module circuit or other UART communication interface driver chip. The functions and features of UART0 are as follows:

- 1. Three communication modes are available: Mode 0, Mode 1 and Mode 3;
- 2. Can choose Timer 1 or Timer 2 as the baud rate generator;
- 3. Interrupt RI/TI can be generated after transmission and reception are completed, and the interrupt flag needs to be cleared by software.

SCON (98H) Serial Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~6	SM0~1	Serial communication mode control bit
		00: Mode 0, 8-bit half-duplex synchronous communication mode, serial data is sent and received on the RX pin. The TX pin is used as the transmit shift clock. 8 bits are sent and received per frame, the low bit is received or sent first;
		01: Mode 1, 10-bit full-duplex asynchronous communication, consisting of 1 start bit, 8 data bits and 1 stop bit, the communication baud rate is variable;
		10: reserved;
		11: Mode 3, 11-bit full-duplex asynchronous communication, consisting of 1 start bit, 8 data bits, a programmable 9th bit, and 1 stop bit. The communication baud rate is variable.
5	SM2	Serial communication mode control bit 2, this control bit is only valid for mode 3

Page 149 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		0: set RI to generate an interrupt request every time a complete data frame is received; 1: When a complete data frame is received, RI will be set to generate an interrupt request only when RB8=1. The baud rate override setting bit is only valid in mode 0 (SM0~1 = 00): 0: The serial port runs at 1/12 of the system clock 1: The serial port runs at 1/4 of the system clock
4	REN	Receive enable control bit 0: data reception is not allowed; 1: Allow receiving data.
3	TB8	Only valid for mode 3, which is the 9th bit of the transmitted data
2	RB8	Only valid for mode 3, the 9th bit of the received data
1	TI	Transmit interrupt flag
0	RI	Receive interrupt flag

SBUF (99H) Serial Data Buffer Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				SBUF	[7: 0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

	Bit number	Bit Mnemonic	Description
--	------------	--------------	-------------

Page 150 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

7~0	SBUF[7: 0]	Serial data buffer register
		SBUF contains two registers: a transmit shift register and a receive latch. The data written to SBUF will be sent to the transmit shift register and start the transmission process. Reading SBUF will return the contents of the receive latch.

15.1 Baud Rate of Serial Communication

In mode 0, the baud rate can be programmed to 1/12 or 1/4 of the system clock:

- 1. SM2=0, the serial port runs at 1/12 of the system clock;
- 2. SM2=1, the serial port runs at 1/4 of the system clock.

In Mode 1 and Mode 3, the baud rate can be selected from Timer 1 or Timer 2 overflow rate.

Set the TCLKX (TXCON.4) and RCLKX (TXCON.5) bits to 1 to select Timer 2 as the baud clock source for TX and RX (see the timer section for details). Regardless of whether TCLKX or RCLKX is logic 1, Timer 2 is a baud rate generator. If TCLK and RCLK are logic 0, Timer 1 serves as the baud clock source for Tx and Rx.

The baud rate formulas for Mode 1 and Mode 3 are shown below, where [TH1, TL1] is the 16-bit counter register of Timer 1, and [RCAPXH, RCAPXL] is the 16-bit reload register of Timer 2.

1. Use Timer 1 as the baud rate generator. Timer 1 must stop counting, that is, TR1=0:

BaudRate =
$$\frac{\text{fsys}}{\text{[TH1,TL1]}}$$
; (Note: [TH1, TL1] must be bigger than 0x0010)

2. Use Timer 2 as the baud rate generator:

$$BaudRate = \frac{fsys}{[RCAPXH,RCAPXL]}; (Note: [RCAPXH, RCAPXL] \text{ must be bigger than } 0x0010)$$

Page 151 of 224 V1.0

16 SPI/TWI/UART Serial Interface (USCI0/1/2)

Symbol	Address	Description	7	6	5	4	3	2	1	0	POR
US0CO N0	95H	USCI0 control register 0				US0CO	N0[7: 0]				0000000 0b
US0CO N1	9DH	USCI0 control register 1				US0CO	N1[7: 0]				0000000
US0CO N2	9EH	USCI0 control register 2				US0CO	N2[7: 0]				0000000 0b
US0CO N3	9FH	USCI0 control register 3				US0CO	N3[7: 0]				0000000 0b
US1CO N0	A4H	USCI1 control register 0		US1CON0[7: 0]						0000000 0b	
US1CO N1	A5H	USCI1 control register 1				US1CO	N1[7: 0]				0000000 Ob
US1CO N2	A6H	USCI1 control register 2				US1CO	N2[7: 0]				0000000 0b
US1CO N3	A7H	USCI1 control register 3				US1CO	N3[7: 0]				0000000 0b
US2CO N0	C4H	USCI2 control register 0				US2CO	N0[7: 0]				0000000 0b
US2CO N1	C5H	USCI2 control register 1	US2CON1[7: 0]					0000000 0b			
US2CO N2	C6H	USCI2 control register 2	US2CON2[7: 0]				0000000 0b				
US2CO N3	C7H	USCI2 control register 3				US2CO	N3[7: 0]				0000000 0b

The SC95F852X internally integrates three three-select one universal serial circuits interface (referred to as USCI), which can facilitate the connection between MCU and devices or equipment with different interfaces. The user

Page 152 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

can configure the USCI interface to any one of SPI, TWI and UART through the USMD1[1: 0], USMD0[1: 0] bits of the configuration register OTCON, or the USMD2[1: 0] bits of TMCON. Its characteristics are as follows:

- 1. SPI mode can be configured as one of master mode or slave mode, with 8-bit or 16-bit transmission mode
- 2. TWI mode communication can be configured as master mode or slave mode
- 3. There are three UART modes:
 - ① Mode 0: 8-bit half-duplex synchronous communication
 - 2 Mode 1: 10-bit full-duplex asynchronous communication
 - 3 Mode 3: 11-bit full-duplex asynchronous communication

The specific configuration method is as follows:

OTCON (8FH) Output Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	USMD	1[1: 0]	USMD0[1: 0]		VOIRS[1: 0]		SCS	BIAS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~6	USMD1[1: 0]	USCI1 Communication mode control bit 00: USCI1 close 01: USCI1 Set to SPI communication mode; 10: USCI1 Set to TWI communication mode; 11: USCI1 Set to UART communication mode;
5~4	USMD0[1: 0]	USCI0 Communication mode control bit 00: USCI0 Set to SC communication mode;

Page 153 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

01: USCI0 Set to SPI communication mode;
10: USCI0 Set to TWI communication mode;
11: USCI0 Set to UART communication mode;

TMCON (8EH) Timer Frequency Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	USMD	2[1: 0]	-	-	-	-	T1FD	TOFD
R/W	R/W	R/W	-	-	-	-	R/W	R/W
POR	0	0	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
7~6	USMD2[1: 0]	USCI2 Communication mode control bit
		00: USCI2 close
		01: USCI2 set to SPI communication mode;
		10: USCI2 set to TWI communication mode;
		11: USCI2 set to UART communication mode;

Note:

A USCI interface can be set to different communication modes via the USMD, each of which has a corresponding operation register set. The control register groups in different communication modes share the same mapped address, but the operations among the groups are independent. Setting the control register in one communication mode does not affect the values in the register groups in other communication modes.

Such as:

- At the same time, US0CON0 (95H) = 0x80H is set in SPI communication mode.
- Anyway, USMD1 =11, USCI0 being the UART communication interface, is set to US0CON0 (95H) = 0x0FH.

Page 154 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

- Anyway, USMD1 is set to 01, USCI0 is set back to the SPI communication interface, and US0CON0 (95H) is read in this mode, which reads 0x80H.
- Anyway, USMD1 is set to 11, and USCI0 is set back to the UART communication interface.
 US0CON0 (95H) is read in this mode, which reads 0x0FH.

16.1 SPI

Serial Peripheral Device Interface (SPI for short) is a high-speed serial communication interface that allows the MCU to perform full-duplex, synchronous serial communication with peripheral devices (including other MCUs).

The three SPI interfaces of SC95F852X, SPI0/1/2, can be set to master mode or slave mode. SPI1 and SPI2 are the conventional SPI communication interfaces. SPI0 adds an 8-level transceiver FIFO in the main mode based on the conventional SPI communication interface.

16.1.1 SPI0

USMD0[1:0] = 01, one of three serial interfaces USCI0 is configured as SPI interface, namely SPI0:

- USTX0 as MOSI signal
- USRX0 as MISO signal
- USCK0 as CLK signal

SPI0 can be set as the main mode or the slave mode. In the main mode, SPI0 has 16-bit 8-level FIFO cache for receiving and sending. Users can achieve in the main mode of SPI0:

- The SPI0 data cache SPD continuously writes 8 or less bits of 16-bit data. The first data written is also sent into the sending FIFO first, and then sent out in turn. When THE FIFO launched the last data, send status flag bit TXE set up, on behalf of send FIFO is empty; If the sending FIFO is full, the writing conflict flag bit WCOL is set, and the data written to SPD is invalid until the data in THE FIFO is sent out and the FIFO is not satisfied, the data of SPD can be sent to FIFO again. When all the data in FIFO is sent, SPIF is set as the signal of data transmission completion in SPI0.
- A queue reads eight or less 16-bit data continuously from the data cache SPD, allowing the first data to be received to be read first.

Note the following two points when using the grade 8 FIFO of SPI0:

- 1. SPI0 only has 16-bit grade 8 FIFO cache in host mode, not in slave mode;
- 2. When the enable control bit of SPI0 SPEN=0, grade 8 FIFO will be cleared to zero. At this time, it is invalid for users to write data into FIFO. Therefore, sending data to the FIFO is placed after SPEN position 1.

The FIFO function of SPI0 compares with the normal SPI interface as follows:

Contrast	SPI0	SPI1~2

Page 155 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

TXE	FIFO out the last data, send FIFO is empty, set 1	no such flag bit
WCOL	If the FIFO is full and WCOL is set to 1, the data written to the SPD cannot be sent into the FIFO	When a frame is being sent, data is written to the buffer SPD, WCOL is set to 1, and the data written to the SPD is invalid
SPIF	FIFO launched the last data has been sent, by the hardware to set this interrupt flag	After sending, the hardware sets the interrupt flag bit

16.1.1.1 SPI0 Operation-dependent register

US0CON0 (95H) USCI0 control register 0 (Read/Write)

Bit number	7	6	5	4	3	2	1	0
Bit	SPEN	-	MSTR	CPOL	CPHA	SPR2	SPR1	SPR0
Mnemonic								
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	Х	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description					
7	SPEN	SPI enable control bit					
		0: close the SPI					
		1: open the SPI					
5	MSTR	SPI master/slave select bit					
		0: SPI is the slave device					
		1: SPI is the master device					
4	CPOL	Clock polarity control bit					
		0: SCK is low in idle state					
		1: SCK is high in idle state					
3	CPHA	Clock phase control bit					
		0: Data is collected at the first edge of the SCK cycle					
		1: Data is collected at the second edge of the SCK cycle					
2~0	SPR[2:0]	SPI clock rate selection bit					
		000: fsys					
		001: fsys/2					
		010: fsys/4					
		011: fsys/8					
		100: fsys/16					
		101: fsys/32					
		110: fsys/64					
		111: fsys/128					
1	-	Reversed					

Page 156 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

US0CON1 (9DH) SPI0 状态寄存器(读/写)

Bit number	7	6	5	4	3	2	1	0
Bit	SPIF	WCOL	-	-	TXE	DORD	SPMD	TBIE
Mnemonic								
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
POR	0	0	Х	Х	0	0	0	0

Bit number	Bit Mnemonic	Description
7	SPIF	SPI data transmission flag
		0: Cleared by software
		1: Indicates that data transmission has been completed, set by
		hardware
6	WCOL	Write conflict flag
		0: Cleared by software, indicating that the write conflict has been
		processe
		1: When the FIFO is full, WCOL is set to 1 by the hardware
3	TXE	Send status flag bit
		0: Send FIFO not empty
		1: Send FIFO is empty, TXE set, must be cleared by the software.
2	DORD	Transmission direction selection bit
		0: MSB first sent
		1: LSB first sent
1	SPMD	SPI transmission mode selection:
		0: 8-bit mode
		1: 16-bit mode
0	TBIE	Send cache interrupt to allow control bit
		0: Send interrupts are not allowed
		1: Allow sending interrupts: WHEN the interrupt flag SPIF=1, TBIE=1
		will generate an SPI interrupt
5~4	-	Reversed

SPDL

US0CON2 (9EH) SPI0 Data register low byte (read/write)

Bit number	7	6	5	4	3	2	1	0			
Bit		SPD[7:0]									
Mnemonic											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
POR	0	0	0	0	0	0	0	0			

Bit number	Bit Mnemonic	Description
7~0	SPD[7:0]	SPI data buffer register low byte (8/16 bit mode)
		Low byte of data written to data register SPD
		Read data low byte of data register SPD

SPDH

US0CON3 (9FH) SPI0 Data register high byte (read/write)

Bit number	7	6	5	4	3	2	1	0		
Bit Mnemonic		SPD[15:8]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Page 157 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR 0 0	0	0	0	0	0	0
---------	---	---	---	---	---	---

Bit number	Bit Mnemonic	Description
7~0	SPD[15:8]	SPI data buffer register high byte (only for 16-bit mode)
		High byte of data written to data register SPD
		Read data high byte of data register SPD
		Note:
		1. When the SPI is set to 16-bit mode, high bytes must be written
		first, then low bytes. After the low bytes are written, data is
		immediately sent to the FIFO.
		2. When SPI0 is used as the host, it continuously writes 8 or less
		16-bit transmitting data to SPD, and the data written first is also
		sent first. Continuously read 8 or less from the data cache 16-bit
		received data, the first received data is also the first to be read;

16.1.1.2 SPI0 Signal Description

Master-Out/Slave-In (MOSI):

This signal connects the master device and a slave device. Data is serially transmitted from the master device to the slave device through MOSI, the master device outputs, and the slave device inputs.

Master-In and Slave-Out (MISO):

This signal connects the slave device and the master device. Data is serially transmitted from the slave device to the master device through MISO, the slave device is output, and the master device is input. When the SPI is configured as a slave device and not selected, the MISO pin of the slave device is in a high impedance state.

SPI Serial Clock (SCK):

The SCK signal is used to control the synchronous movement of input and output data on the MOSI and MISO lines. A byte is transmitted on the wire every 8 clock cycles. If the slave is not selected, the SCK signal is ignored by the slave.

16.1.1.3 SPI0 Operating Modes

SPI can be configured as one of master mode or slave mode. The configuration and initialization of the SPI module are completed by setting the SPI control register USnCON0 (n=0~2) and the SPI status register USnCON1. After the configuration is completed, the data transfer is completed by setting the SPI data registers USnCON2, USnCON3 (hereinafter referred to as SPD).

During SPI communication, data is shifted in and out serially synchronously. The serial clock line (SCK) keeps the movement and sampling of data on the two serial data lines (MOSI and MISO) synchronized. If the slave is not selected, it cannot participate in activities on the SPI bus.

When the SPI master device transmits data to the slave device through the MOSI line, the slave device sends the data to the master device as a response via the MISO line, which realizes the synchronous full-duplex transmission of data sending and receiving under the same clock. The sending shift register and the receiving shift register use the same special function address. Writing to the SPI data register SPD will write to the sending shift register, and reading the SPD will get the data of the receiving shift register.

Page 158 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

The SPI interface of some devices will lead to the SS pin (slave device selection pin, active low). When communicating with the SPI of the SC95F852X, the connection mode of the SS pin of other devices on the SPI bus needs to be connected according to different communication modes. The following table lists the connection modes of the SS pin of other devices on the SPI bus in different SPI communication modes of the SC95F852X:

SC95F852X SPI	Other devices on the SPI bus	Mode	Slave SS (Slave selection pin)
Master mode	Slave mode	One master and one slave	Pull down
		One master and multiple slaves	The SC95F852X leads to multiple I/Os, which are connected to the SS pin of the slave. Before data transmission, the SS pin of the slave device must be set low
Slave mode	Master mode	One master and one slave	Pull up

SPI0 Master Mode

Mode Startup:

The SPI master device controls the start of all data transfers on the SPI bus. When the MSTR bit in the SPI control register USnCON0 is set to 1, the SPI runs in the master mode and only one master device can start the transfer.

Transmitting:

In SPI master mode, perform the following operations on SPD: write a byte of data to SPDL in 8-bit mode or write the high byte to SPDH first, and then write the low byte to SPDL in 16-bit mode, the data will be Will be written to the transmit shift buffer. If there is already a data in the transmit shift register, the main SPI generates a WCOL signal to indicate that the write is too fast. But the data in the transmission shift register will not be affected, and the transmission will not be interrupted. In addition, if the transmission shift register is empty, the master device immediately shifts the data in the transmission shift register to the MOSI line in accordance with the SPI clock frequency on SCK. When the transfer is complete, the SPIF bit in the SPI status register USnCON1 is set to 1. If the SPI interrupt is enabled, an interrupt will also be generated when the SPIF bit is set.

Receiving:

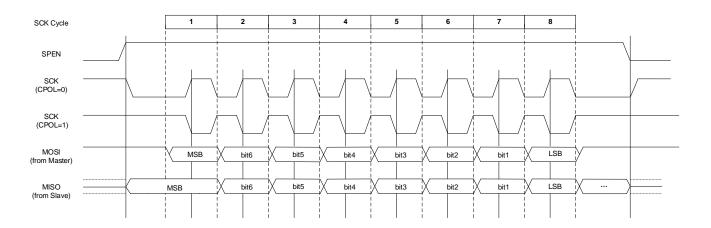
When the master device transmits data to the slave device through the MOSI line, the corresponding slave device also transmits the contents of its transmitting shift register to the receiving shift register of the master device through the MISO line, realizing full-duplex operation. Therefore, the SPIF flag position 1 means that the transmission is complete and the data is received. The data received by the slave device is stored in the receive shift register of the master device according to the MSB or LSB first transmission direction. When a byte of data is completely moved into the receive register, the processor can obtain the data by reading the SPD.

SPI0 Slave mode

Mode Startup:

When the MSTR bit in the SPI control register USnCON0 register is cleared to 0, SPI runs in slave mode.

Page 159 of 224 V1.0

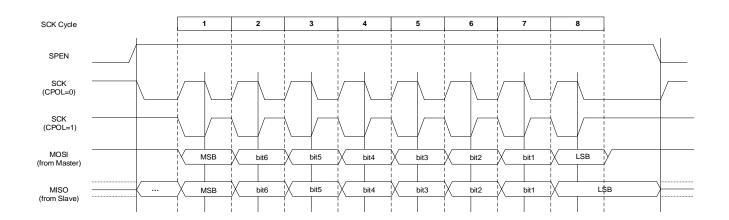

Transmitting and Receiving :

In slave mode, according to the SCK signal controlled by the master device, data is shifted in through the MOSI pin, and the MISO pin is shifted out. A bit counter records the number of edges of SCK. When the receiving shift register shifts in 8-bit data (one byte) and the sending shift register shifts out 8-bit data (one byte), the SPIF flag bit is set to 1. The data can be obtained by reading the SPD register. If the SPI interrupt is enabled, an interrupt will also be generated when SPIF is set. At this time, the receiving shift register keeps the original data and the SPIF bit is 1, so that the SPI slave device will not receive any data until SPIF is cleared. The SPI slave device must write the data to be transmitted into the transmit shift register before the master device starts a new data transmission. If no data is written before starting to send, the slave device will transmit the "0x00" byte to the master device. If the SPD write operation occurs during the transfer, the WCOL flag of the SPI slave device is set to 1, that is, if the transfer shift register already contains data, the WCOL bit of the SPI slave device is set to 1, indicating that the write SPD conflicts. But the data of the shift register is not affected, and the transmission will not be interrupted.

transfer Form

By software setting the CPOL bit and CPHA bit of the SPI control register USnCON0, the user can select four combinations of SPI clock polarity and phase. The CPOL bit defines the polarity of the clock, that is, the level state when idle, and it has little effect on the SPI transmission format. The CPHA bit defines the phase of the clock, that is, defines the clock edge that allows data sampling and shifting. In the two devices of master-slave communication, the setting of the clock polarity phase should be the same.

When CPHA = 0, the first edge of SCK captures data, and the slave must prepare the data before the first edge of SCK.


CPHA = 0 Data transfer diagram

When CPHA = 1, the master device outputs data to the MOSI line on the first edge of SCK, the slave device uses the first edge of SCK as the start signal, and the second edge of SCK starts to capture data, so the user must The operation of writing SPD is completed within two edges of one SCK. This form of data transmission is the preferred form of communication between a master device and a slave device.

Page 160 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

CPHA = 1 Data transfer diagram

Error Detection

Writing to SPD during the data transmission sequence will cause a write conflict, and the WCOL bit in the SPI status register USnCON1 is set to 1. WCOL bit 1 will not cause interruption, and transmission will not be aborted. The WCOL bit needs to be cleared by software.

Page 161 of 224 V1.0

16.1.2 SPI1/2

USMDn[1:0] = 01 (n=1,2) serial interface USCI is configured as SPI interface, that is, spi1/2:

- Static USTXn acts as an MOSI signal
- Lent USRXn acts as a MISO signal
- Queue USCKn acts as a CLK signal

Spi1/2 can be set to master mode or slave mode.

16.1.2.1 SPI1/2 Operation-dependent register

US1CON0 (A4H) SPI1 control register (read/write) US2CON0 (C4H) SPI2 control register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit	SPEN	-	MSTR	CPOL	CPHA	SPR2	SPR1	SPR0
Mnemonic								
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	х	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	SPEN	SPI enable control bit
		0: close the SPI
		1: open the SPI
5	MSTR	SPI master/slave select bit
		0: SPI is the slave device
		1: SPI is the master device
4	CPOL	Clock polarity control bit
		0: SCK is low in idle state
		1: SCK is high in idle state
3	СРНА	Clock phase control bit
		0: Data is collected at the first edge of the SCK cycle
		1: Data is collected at the second edge of the SCK cycle
2~0	SPR[2:0]	SPI clock rate selection bit
		000: fsys
		001: fsys/2
		010: fsys/4
		011: fsys/8
		100: fsys/16
		101: fsys/32
		110: fsys/64
		111: fsys/128
1	-	Reversed

US1CON1 (A5H) SPI1 Status Register (read/write) US2CON1 (C5H) SPI2 Status Register (read/write)

Page 162 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	7	6	5	4	3	2	1	0
Bit	SPIF	WCOL	-	-	-	DORD	SPMD	TBIE
Mnemonic								
R/W	R/W	R/W	-	-	-	R/W	R/W	R/W
POR	0	0	Х	Х	Х	0	0	0

Bit number	Bit Mnemonic	Description
7	SPIF	SPI data transmission flag
		0: Cleared by software
		1: Indicates that data transmission has been completed, set by
		hardware
6	WCOL	Write conflict flag
		0: Cleared by software, indicating that the write conflict has been
		processe
		1: When the FIFO is full, WCOL is set to 1 by the hardware
2	DORD	Transmission direction selection bit
		0: MSB first sent
		1: LSB first sent
1	SPMD	SPI transmission mode selection:
		0: 8-bit mode
		1: 16-bit mode
0	TBIE	Send cache interrupt to allow control bit
		0: Send interrupts are not allowed
		1: Allow sending interrupts: WHEN the interrupt flag SPIF=1, TBIE=1
		will generate an SPI interrupt
5~4	-	Reversed

SPDL US1CON2 (A6H) SPI1 Data register low byte (read/write) US2CON2 (C6H) SPI2 Data register low byte (read/write)

Bit number	7	6	5	4	3	2	1	0			
Bit		SPD[7:0]									
Mnemonic											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
POR	0	0	0	0	0	0	0	0			

Bit number	Bit Mnemonic	Description
7~0	SPD[7:0]	SPI data buffer register low byte (8/16 bit mode)
		Low byte of data written to data register SPD
		Read data low byte of data register SPD

SPDH US1CON3 (A7H) SPI1 Data register high byte (read/write) US2CON3 (C7H) SPI2 Data register high byte (read/write)

Bit number	7	6	5	4	3	2	1	0	
Bit	SPD[15:8]								
Mnemonic		• •							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
POR	0	0	0	0	0	0	0	0	

Page 163 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description						
7~0	SPD[15:8]	SPI data buffer register high byte (only for 16-bit mode)						
		High byte of data written to data register SPD						
		Read data high byte of data register SPD						
		Note:						
		1. When the SPI is set to 16-bit mode, high bytes must be written						
		first, then low bytes. After the low bytes are written, data is						
		immediately sent to the FIFO.						
		2. When SPI0 is used as the host, it continuously writes 8 or less						
		16-bit transmitting data to SPD, and the data written first is also						
		sent first. Continuously read 8 or less from the data cache 16-bit						
		received data, the first received data is also the first to be read;						

16.1.2.2 SPI1/2 Signal Description

Master-Out/Slave-In (MOSI):

This signal connects the master device and a slave device. Data is serially transmitted from the master device to the slave device through MOSI, the master device outputs, and the slave device inputs.

Master-In and Slave-Out (MISO):

This signal connects the slave device and the master device. Data is serially transmitted from the slave device to the master device through MISO, the slave device is output, and the master device is input. When the SPI is configured as a slave device and not selected, the MISO pin of the slave device is in a high impedance state.

SPI Serial Clock (SCK):

The SCK signal is used to control the synchronous movement of input and output data on the MOSI and MISO lines. A byte is transmitted on the wire every 8 clock cycles. If the slave is not selected, the SCK signal is ignored by the slave.

16.1.2.3 SPI1/2 Operating Modes

SPI can be configured as one of master mode or slave mode. The configuration and initialization of the SPI module are completed by setting the SPI control register USnCON0 (n=0~2) and the SPI status register USnCON1. After the configuration is completed, the data transfer is completed by setting the SPI data registers USnCON2, USnCON3 (hereinafter referred to as SPD).

During SPI communication, data is shifted in and out serially synchronously. The serial clock line (SCK) keeps the movement and sampling of data on the two serial data lines (MOSI and MISO) synchronized. If the slave is not selected, it cannot participate in activities on the SPI bus.

When the SPI master device transmits data to the slave device through the MOSI line, the slave device sends the data to the master device as a response via the MISO line, which realizes the synchronous full-duplex transmission of data sending and receiving under the same clock. The sending shift register and the receiving shift register use the same special function address. Writing to the SPI data register SPD will write to the sending shift register, and reading the SPD will get the data of the receiving shift register.

Page 164 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

The SPI interface of some devices will lead to the SS pin (slave device selection pin, active low). When communicating with the SPI of the SC95F852X, the connection mode of the SS pin of other devices on the SPI bus needs to be connected according to different communication modes. The following table lists the connection modes of the SS pin of other devices on the SPI bus in different SPI communication modes of the SC95F852X:

SC95F852X SPI	Other devices on the SPI bus	Mode	Slave SS (Slave selection pin)
Master mode	Slave mode	One master and one slave	Pull down
		One master and multiple slaves	The SC95F852X leads to multiple I/Os, which are connected to the SS pin of the slave. Before data transmission, the SS pin of the slave device must be set low
Slave mode	Master mode	One master and one slave	Pull up

SPI1/2 Master Mode

Mode Startup:

The SPI master device controls the start of all data transfers on the SPI bus. When the MSTR bit in the SPI control register USnCON0 is set to 1, the SPI runs in the master mode and only one master device can start the transfer.

Transmitting:

In SPI master mode, perform the following operations on SPD: write a byte of data to SPDL in 8-bit mode or write the high byte to SPDH first, and then write the low byte to SPDL in 16-bit mode, the data will be Will be written to the transmit shift buffer. If there is already a data in the transmit shift register, the main SPI generates a WCOL signal to indicate that the write is too fast. But the data in the transmission shift register will not be affected, and the transmission will not be interrupted. In addition, if the transmission shift register is empty, the master device immediately shifts the data in the transmission shift register to the MOSI line in accordance with the SPI clock frequency on SCK. When the transfer is complete, the SPIF bit in the SPI status register USnCON1 is set to 1. If the SPI interrupt is enabled, an interrupt will also be generated when the SPIF bit is set.

Receiving:

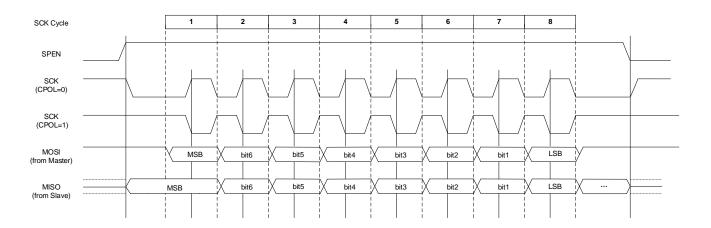
When the master device transmits data to the slave device through the MOSI line, the corresponding slave device also transmits the contents of its transmitting shift register to the receiving shift register of the master device through the MISO line, realizing full-duplex operation. Therefore, the SPIF flag position 1 means that the transmission is complete and the data is received. The data received by the slave device is stored in the receive shift register of the master device according to the MSB or LSB first transmission direction. When a byte of data is completely moved into the receive register, the processor can obtain the data by reading the SPD.

SPI1/2 Slave mode

Mode Startup:

When the MSTR bit in the SPI control register USnCON0 register is cleared to 0, SPI runs in slave mode.

Page 165 of 224 V1.0

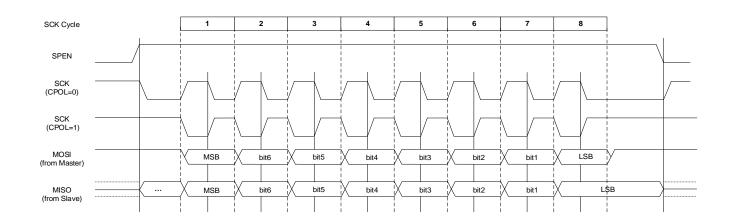

Transmitting and Receiving :

In slave mode, according to the SCK signal controlled by the master device, data is shifted in through the MOSI pin, and the MISO pin is shifted out. A bit counter records the number of edges of SCK. When the receiving shift register shifts in 8-bit data (one byte) and the sending shift register shifts out 8-bit data (one byte), the SPIF flag bit is set to 1. The data can be obtained by reading the SPD register. If the SPI interrupt is enabled, an interrupt will also be generated when SPIF is set. At this time, the receiving shift register keeps the original data and the SPIF bit is 1, so that the SPI slave device will not receive any data until SPIF is cleared. The SPI slave device must write the data to be transmitted into the transmit shift register before the master device starts a new data transmission. If no data is written before starting to send, the slave device will transmit the "0x00" byte to the master device. If the SPD write operation occurs during the transfer, the WCOL flag of the SPI slave device is set to 1, that is, if the transfer shift register already contains data, the WCOL bit of the SPI slave device is set to 1, indicating that the write SPD conflicts. But the data of the shift register is not affected, and the transmission will not be interrupted.

transfer Form

By software setting the CPOL bit and CPHA bit of the SPI control register USnCON0, the user can select four combinations of SPI clock polarity and phase. The CPOL bit defines the polarity of the clock, that is, the level state when idle, and it has little effect on the SPI transmission format. The CPHA bit defines the phase of the clock, that is, defines the clock edge that allows data sampling and shifting. In the two devices of master-slave communication, the setting of the clock polarity phase should be the same.

When CPHA = 0, the first edge of SCK captures data, and the slave must prepare the data before the first edge of SCK.


CPHA = 0 Data transfer diagram

When CPHA = 1, the master device outputs data to the MOSI line on the first edge of SCK, the slave device uses the first edge of SCK as the start signal, and the second edge of SCK starts to capture data, so the user must The operation of writing SPD is completed within two edges of one SCK. This form of data transmission is the preferred form of communication between a master device and a slave device.

Page 166 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

CPHA = 1 Data transfer diagram

Error Detection

Writing to SPD during the data transmission sequence will cause a write conflict, and the WCOL bit in the SPI status register USnCON1 is set to 1. WCOL bit 1 will not cause interruption, and transmission will not be aborted. The WCOL bit needs to be cleared by software.

Page 167 of 224 V1.0

16.2 TWI

USMDn[1: 0] = 10,n=0-2 One of three serial interface USCI is configured as TWI interface:

- USTXn as SDA signal
- USCKn as CLK signal

The SC95F852X can be set as master or slave mode according to application requirements during TWI communication.

US0CON0 (95H) TWI0 Control Register 0 (read/write)

US1CON0 (A4H) TWI1 Control Register 0 (read/write)

US2CON0 (C4H) TWI2 Control Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TWEN	TWIF	MSTR	GCA	AA	STATE[2: 0]		
R/W	R/W	R/W	Read	Read	R/W	Read	Read	Read
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	TWEN	TWI enable control 0: Disable TWI 1: Enable TWI
6	TWIF	TWI interrupt flag 1. Cleared by software 2. Under the following conditions, the interrupt flag bit is set by hardware: 1) Master mode:

Page 168 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		① Send start signal						
		② After sending the address frame						
		③ Receive or send the data frame						
		2) Slave mode:						
		① The first frame address matches successfully						
		② Successfully receive or send 8-bit data						
		③ Receive repeated start condition						
		④ The slave receives a stop signal						
5	MSTR	Master-slave flag						
		0: Slave mode						
		1: Main mode						
		Description:						
		1. When the TWI interface sends a start condition to the bus, it will automatically switch to the main mode, and the hardware will set this bit at the same time;						
		2. When a stop condition is detected on the bus, the hardware clears this bit.						
4	GCA	General address response flag						
		0: Non-response general address						
		1: When GC is set to 1 and the general address matches at the same time, this bit is set to 1 by hardware and automatically cleare						
3	AA	Answer enable bit						
		0: No response, return UACK (the response bit is high)						
		1: After receiving a matching address or data, a response ACK is returned						
2~0	STATE[2: 0]	State machine status flag						
		Slave mode:						

Page 169 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

000: The slave is in the idle state, waiting for TWEN to be set to 1, and detecting the TWI start signal. When the slave receives the stop condition, the jump will go to this state

001: The slave is receiving the first frame address and read/write bit (the 8th bit is the read/write bit, 1 is read, and 0 is write). The slave will jump to this state after receiving the start condition

010: Slave receiving data status

011: slave sending data status

100: In the state of sending data from the slave, when the master returns to UACK, it jumps to this state and waits for a restart signal or a stop signal.

101: When the slave is in the sending state, writing 0 to AA will enter this state, waiting for a restart signal or a stop signal.

110: If the address of the slave does not match the address sent by the master, it will jump to this state and wait for a new start condition or stop condition.

Master mode:

000: The state machine is idle

001: The Master sends the start condition or the Master is sending the slave device address

010: Master sends data

011: Master receives data

100: The master sends a stop condition or receives a UACK signal from the slave

US0CON1 (9DH) TWI0 Control Register 1 (read/write)

US1CON1 (A5H) TWI1 Control Register 1 (read/write)

US2CON1 (C5H) TWI2 Control Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TXnE/ RXnE	STRETCH	STA	STO		TWO	CK[3: 0]	

Page 170 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R/W	Read Only	R/W						
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	TXnE/RXnE	Send/receive complete flag In the following situations, TXnE/RXnE is set to 1 Master mode: ① The Master sends an address frame (write) and receives an ACK from the slave ② The master sends the data and receives the slave ACK ③ The Master receives the data, and the Master returns ACK from the slave Slave mode: ① The slave receives the address frame (read), and it matches the slave address (TWA) ② The slave receives the data, and the slave returns an ACK to the master ③ The slave sends the data and receives the master ACK (AA=1) Reading and writing to TWIDAT will clear this flag.
6	STRETCH	Allow clock extension (slave mode) 0: disable clock extension 1: Allow clock extension, the Master needs to support the clock extension function Description: After the data transmission is completed, and ACK is 0, clock stretching occurs at this time
5	STA	Start bit

Page 171 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		Set "1" to generate start condition, TWI will switch to Master mode
		Software can set or clear this bit, or it can be cleared by hardware when the start condition is issued.
4	STO	Master mode stop bit
		Set to "1" in the Master mode, a stop condition will be generated after the current byte is transmitted or the start condition is sent
		Software can set or clear this bit, or it can be cleared by hardware when a stop condition is detected.
3~0	TWCK[3: 0]	TWI communication rate setting in Master mode:
		0000: fsys /1024
		0001: f _{SYS} /512
		0010: f _{SYS} /256
		0011: f _{SYS} /128
		0100: f _{SYS} /64
		0101: f _{SYS} /32
		0110: f _{SYS} /16
		Others: Reserved
		Note:
		1. The setting is invalid in slave mode. The maximum clock frequency is 400kHz;
7	-	Reserved

US0CON2 (9EH) TWI0 Address Register (read/write)

US1CON2 (A6H) TWI1 Address Register (read/write)

US2CON2 (C6H) TWI2 Address Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic				TWA[6: 0]				GC

Page 172 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

| R/W |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Bit number	Bit Mnemonic	Description				
7~1	TWA[6: 0]	TWI address register TWA[6: 0] cannot be written as all 0s, 00H is dedicated to general address addressing. Invalid setting in Master mode				
0	GC	TWI general address enable 0: Forbid to respond to general address 00H 1: Allow response to general address 00H				

US0CON3 (9FH) TWI0 Data Buffer Register (read/write)

US1CON3 (A7H) TWI1 Data Buffer Register (read/write)

US2CON3 (C7H) TWI2 Data Buffer Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	TWDAT[7: 0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	TWDAT[7: 0]	TWI Data buffer register

Page 173 of 224 V1.0

16.2.1 Signal Description

TWI Clock Signal Line(SCL)

The clock signal is sent by the master and connected to all slaves. One byte of data is transmitted every 9 clock cycles. The first 8 cycles are used for data transmission, and the last clock is used as the receiver's response clock. It should be high when it is idle, pulled up by the pull-up resistor on the SCL line.

TWI Data Signal Line(SDA)

SDA is a bidirectional signal line, which should be high when it is idle, and is pulled high by the pull-up resistor on the SDA line.

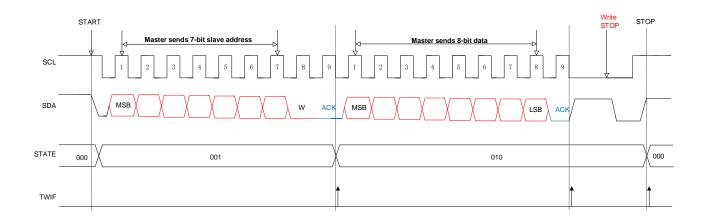
16.2.2 Slave Operating Mode

Mode Start:

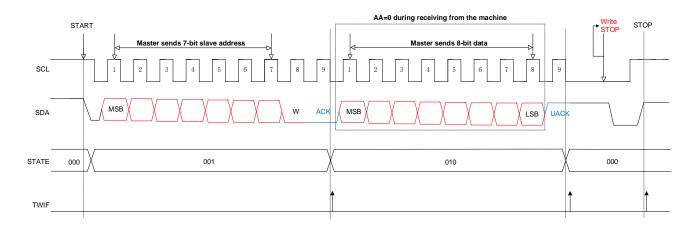
When the TWI enable flag is turned on (TWEN = 1) and the start signal sent by the Master is received at the same time, the mode is started.

The slave enters the state of receiving the first frame address (STATE[2: 0] = 001) from the idle mode (STATE[2: 0] = 000), and waits for the first frame of data from the master. The first frame of data is sent by the Master, including 7-bit address bits and 1 bit for reading and writing. All slaves on the TWI bus will receive the first frame of data from the Master. The Master releases the SDA signal line after sending the first frame of data. If the address sent by the Master is the same as the value in a slave's own address register, it means that the slave is selected. The selected slave will judge the 8th bit on the bus, that is, the data read and write bit (=1, read command) ;=0, write command), then occupy the SDA signal line, give the Master a low-level response signal in the 9th clock cycle of SCL, and then release the bus. After the slave is selected, it will enter different states according to the different read and write bits:

Non-general Address Response, Slave Device Receiving Mode:


If the read/write bit received in the first frame is write (0), the slave enters the slave receiving state (STATE[2: 0] = 010) and waits for the data sent by the Master. The master must release the bus every time it sends 8 bits and wait for the response signal from the slave in the 9th cycle.

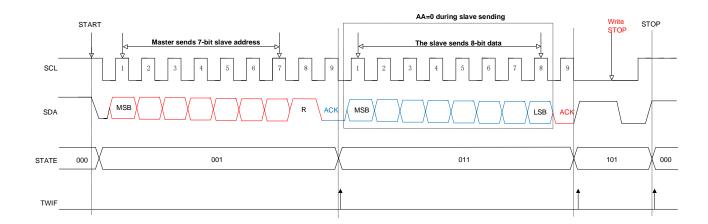
- If the response signal of the slave is low, the communication of the master can be in the following three ways:
 - 1) Continue to send data;
 - 2) Resend the start signal (start), at this time the slave re-enters the state of receiving the first frame address (STATE[2: 0] = 001);
 - 3) Send a stop signal to indicate the end of this transmission, and the slave returns to the idle state, waiting for the next start signal from the Master.


Page 174 of 224 V1.0

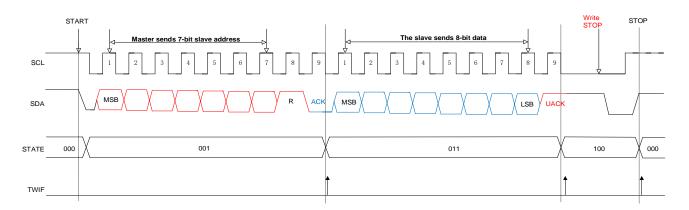
Super High-Speed Low Power Consumption Flash MCU

2. If the slave responds to a high level (during the receiving process, the AA value in the slave register is rewritten to 0), it means that after the current byte is transmitted, the slave will actively end the transmission and return to the idle state (STATE[2: 0] = 000), no longer receive data from the Master.

Non-general Address Response, Slave Device Transmitting Mode:

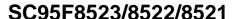

If the read/write bit received in the first frame is read (1), the slave will occupy the bus and send data to the Master. Every time 8 bits of data are sent, the slave releases the bus and waits for the response from the master:

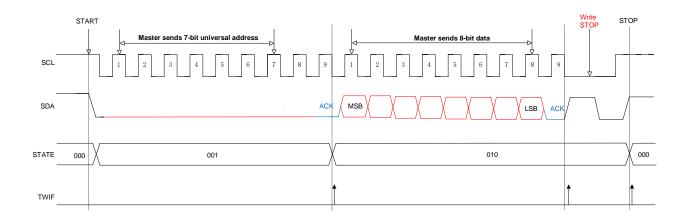
If the master responds with a low level, the slave continues to send data. In the process of sending, if the AA value in the slave register is rewritten to 0, the slave will actively end the transmission and release the bus after the current byte is transmitted, and wait for the stop signal or restart signal of the master (STATE[2: 0] = 101).


Page 175 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

2. If the master responds to a high level, the slave STATE[2: 0] = 100, waiting for the master's stop signal or restart signal.




General Address Response:

When GC=1, the general address is allowed to be used at this time. The slave enters the state of receiving the first frame address (STATE[2: 0] = 001), the address bit data in the first frame of data received is 0x00, and all slaves respond to the master at this time. The read and write bits sent by the master must be write (0), and all slaves enter the state of receiving data (STATE[2: 0] = 010) after receiving. The Master releases the SDA line every time 8 data is sent, and reads the status on the SDA line:

- 1. If there is a response from the slave, the communication of the master can be in the following three ways:
 - 1) Continue to send data;
 - Restart;
 - Send a stop signal to end this communication.

Page 176 of 224 V1.0

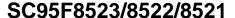
2. If no slave responds, SDA is idle.

Note: When using the universal address in the one-master multiple-slave mode, the read and write bits sent by the Master cannot be in the read (1) state, otherwise, all devices on the bus will respond except for the device sending the data.

16.2.3 Slave Mode Operation Steps

- 1. Configure USMDn[1: 0] and select TWI mode;
- Configure the TWIn control registers USnCON0 and USnCON1;
- 3. Configure the TWI address register USnCON2;
- 4. If the slave receives data, it waits for the interrupt flag bit TWIF in USnCON0 to be set. Every time the slave receives 8 bits of data, TWIF will be set to 1. The interrupt flag bit TWIF needs to be manually cleared:
- 5. If the slave sends data, write the data to be sent into TWDAT, and TWI will automatically send the data. Every 8 bits are sent, the interrupt flag bit TWIF will be set.

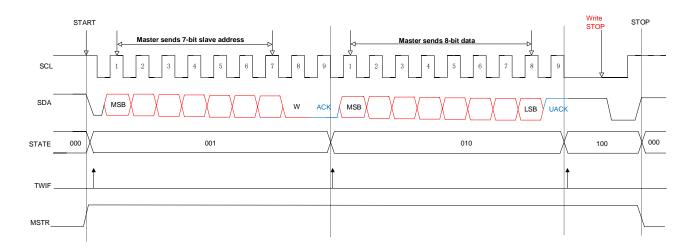
16.2.4 Master Mode


Mode startup:

When the TWI interface sends an initial condition to the bus, it will automatically switch to the main mode, and the hardware will set the MSTR bit to 1. The Master state bit STATE[2: 0] switches from 000 to 001, and the interrupt condition TWIF is set to 1.

TWI Master sending mode:

In the master sending mode, the first frame of data sent by the master includes 7 address bits (selected slave address) and 1 read/write bit (=0, write command). All slaves on the TWI bus will receive the master The first frame of data. The Master releases the SDA signal line after sending the first frame of data. The selected slave sends a response signal to the master in the 9th clock cycle of SCL, and then releases the bus and enters the slave receiving state to wait for the data sent by the master. The master must release the bus every time it sends 8 bits and wait for the response signal from the slave in the 9th cycle.


Page 177 of 224 V1.0

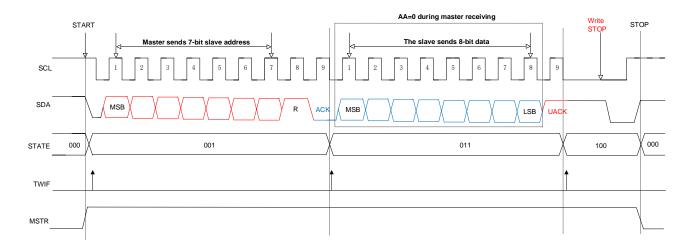
1. If the slave responds low, the master can continue to send data. You can also resend the start signal:

2. If the slave responds to a high level, it means that after the current byte has been transmitted, the slave will actively end this transmission and will no longer receive the data sent by the master. The master STATE[2: 0] will switch from the sending data state 010 to 100:

TWI Master Receiving Mode:

In the master sending mode, the first frame of data sent by the master includes a 7-bit address bit (selected slave address) and a 1-bit read and write bit (=1, read command). All slaves on the TWI bus will receive The first frame of data to the Master. The Master releases the SDA signal line after sending the first frame of data. The selected slave sends an acknowledge signal to the master in the 9th clock cycle of SCL, and then will occupy the bus and send data to the master. Every time 8 bits of data are sent, the slave releases the bus and waits for the response from the master. The Master receives the response signal ACK after the slave address is successfully matched, and starts to receive the slave data (STATE=011):

1. If the Master response bit is enabled (AA=1), every time a BYTE data is received, the Master responds with the response signal ACK, and TWIF is set;


Page 178 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

2. Before receiving the last byte of data, if the response enable bit is turned off (AA=0), the Master will reply UACK after receiving the last byte of data, and then the Master can send a stop signal.

In the Master receiving mode, the way to actively release the bus is as follows:

16.2.5 Master Mode Operation Steps

- 1. Configure USMDn[1: 0] and select TWI mode;
- 2. Configure the TWIn control register USnCON0: TWEN = 1, enable TWI
- Configure the TWIn control register USnCON1: configure the TWI communication rate (TWCK[3: 0]), set the start bit STA to "1"
- 4. Configure TWIn address register USnCON3: write "slave address plus read and write bits" into TWDAT, and send out an address frame on the bus
- 5. If the Master receives data, it waits for the interrupt flag bit TWIF in USnCON0 to be set 1. When the Master receives 8 bits of data, the interrupt flag bit will be set. The interrupt flag bit needs to be manually cleared:
- 6. If the Master sends data, write the data to be sent into TWDAT, and TWI will automatically send the data. Every 8 bits are sent, the interrupt flag bit TWIF will be set 1.
- 7. After the data is sent and received, the Master can send a stop condition (STO=1), and the Master state switches to 000. Or send a repeated start signal to start a new round of data transmission.

The TWIF of the Master will not be set after the Master generates a stop!

Page 179 of 224 V1.0

16.3 Serial Interface (UART)

USMDn[1: 0] = 11, n=0~2 one of three serial interface USCI is configured as UART interface. It can be easily used to connect with other devices or equipment, such as Wifi module circuit or other UART communication interface driver chip. Its functions and characteristics are as follows:

- 1. Three communication modes are available: mode 0, mode 1 and mode 3;
- 2. Independent baud rate generator;
- 3. The interrupt RI/TI can be generated after sending and receiving, and the interrupt flag needs to be cleared by software.

When USCI is configured as UART interface: :

- USTXn as TX signal
- USRXn as RX signal

US0CON0 (95H) Serial Port 1 Control Register (read/write)

US1CON0 (A4H) Serial Port 2 Control Register (read/write)

US2CON0 (C4H) Serial Port 3 Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number Bit Mnemonic Description	
Serial port 1 control register (read/write) serial communication modata is sent and received on the RX pin. The TX pin is us transmit shift clock. 8 bits are sent and received per frame, an bits are received or sent first;	ode, serial sed as the

Page 180 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		01: Mode 1, 10-bit full-duplex asynchronous communication, composed of 1 start bit, 8 data bits and 1 stop bit, and the communication baud rate is variable;
		10: Reserved;
		11: Mode 3, 11-bit full-duplex asynchronous communication, composed of 1 start bit, 8 data bits, a programmable 9th bit and 1 stop bit, and the communication baud rate is variable.
5	SM2	Serial communication mode control bit 2, this control bit is only valid for mode 3
		0: Set RI every time a complete data frame is received to generate an interrupt request;
		1: When a complete data frame is received, RI will be set to generate an interrupt request only when RB8=1.
		Baud rate multiplier setting bit, only valid in mode 0 (SM0~1 = 00):
		0: The serial port runs at 1/12 of the system clock
		1: The serial port runs at 1/4 of the system clock
4	REN	Receive permission control bit
		0: It is not allowed to receive data;
		1: Allow to receive data.
3	TB8	Only valid for mode 3, which is the 9th bit of the transmitted data
2	RB8	Only valid for mode 3, which is the 9th bit of the received data
1	ті	Send interrupt flag
0	RI	Receive interrupt flag

US0CON1 (9DH) Serial Port 1 Baud Rate Control Register Low Bit (read/write)

US1CON1 (A5H) Serial Port 2 Baud Rate Control Register Low Bit (read/write)

US2CON1 (C5H) Serial Port 3 Baud Rate Control Register Low Bit (read/write)

Page 181 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	7	6	5	4	3	2	1	0	
Symbol	BAUD1L [7: 0]								
Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	
Initial power-on value	0	0	0	0	0	0	0	0	

US0CON2 (9EH) Serial Port 1 Baud Rate Control Register High Bit (read/write)

US1CON2 (A6H) Serial Port 2 Baud Rate Control Register High Bit (read/write)

US2CON2 (C6H) Serial Port 3 Baud Rate Control Register High Bit (read/write)

Bit number	7	6	5	4	3	2	1	0	
Symbol	BAUD1H [7: 0]								
Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	
Initial power-on value	0	0	0	0	0	0	0	0	

Bit number	Bit Mnemonic	Description
7~0	BAUD1 [15: 0]	USCI Serial port baud rate control
		$BaudRate = \frac{fsys}{[BAUD1H, BAUD1L]}$

Page 182 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	Note: [BAUD1H,BAUD1L] must be greater than 0x0010
--	---

US0CON3 (9FH) Serial 1 Data Buffer Register (read/write)

US1CON3 (A7H) Serial 2 Data Buffer Register (read/write)

US2CON3 (C7H) Serial 3 Data Buffer Register (read/write)

Bit number	7	6	5	4	3	2	1	0		
Bit Mnemonic		SBUF1[7: 0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
POR	0	0	0	0	0	0	0	0		

Bit number	Bit Mnemonic	Description
7~0	SBUF1[7: 0]	Serial Data Buffer Register SBUF1 contains two registers: a sending shift register and a receiving latch. The data written in SBUF1 will be sent to the sending shift register and the sending process will be started. Reading SBUF1 will return the contents of the receiving latch.

Page 183 of 224 V1.0

17 Smart Card (SC)

USMD0[1:0] = 00, Optional Serial port USCI0 is configured as the SC interface:

- USTX0 as SC_DAT signal
- USCK0 as SC_CLK signal

SC95F852X Smart Card controlller is based on the ISO/IEC 7816-3 standard. Software-controlled GPIO pins for smart card reset function and smart card insertion detection function.

17.1 Functional Description

The interface features of the SC95F852X smart card are as follows:

- 1. Iso-7816-3 T = 0
- 2. You can select the forward/reverse convention function
- 3. The clock source frequency (fSC) is adjustable
- 4. The ETU is adjustable
- 5. The extended protection time is adjustable
- 6. Programmable parity or parity bit generation and detection
- 7. The stop bit and Error Signal length are configurable

17.2 SC Control Register

SC95F852X smart card interface registers are as follows:

SCCON SC control register (Read/Write)

US0CON0 (95H) @ USMD0[1:0] = 00

Bit number	7	6	5	4	3	2	1	0
Bit	SCEN	CKEN	TREN	ERS [1:0]		CONS	TRER	PCS
Mnemonic								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	SCEN	SC Interface Settings 0: the channel serves as common I/O 1: the channel serves as port 7816
6	CKEN	SC clock output enable bit 0: disables clock output 1: enables clock output

Page 184 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

5	TREN	SC Send and receive enable bit 0: Indicates that receiving is enabled but sending is disabled 1: indicates that sending is enabled but receiving is disabled. After sending a frame, the interface releases SC_DAT and starts to detect the Error Signal in the stop bit
4~3	ERS[1:0]	Stop and Error Signal length select bits 00: Stop and Error Signal contain 2 ETU 01: Stop and Error Signal contain 2 ETU 10: Stop and Error Signal contain 1.5 ETU 11: Stop and Error Signal contain 1 ETU
2	CONS	Encoding mode control bit 0: positive convention, LSB transmission, positive logic level 1: reverse convention, MSB transmission, reverse logic level
1	TRER	Data sending and receiving verification error retransmission control bit 0: check error, directly set interrupt flag bit 1: a low level reply will be sent if there is an error in receiving data verification. After sending data, the low level reply will be received and the data will be resend
0	PCS	Parity selection bit 0: no check 1: even check

ETUCK0 ETU Rate Division Frequency Register 0 (Read/Write) US0CON1 (9DH) @ USMD0[1:0] = 00

03000011 (9DI1) @ 03111D0[1:0] = 00										
Bit number	7	6	5	4	3	2	1	0		
Bit		ETUCK[7:0]								
Mnemonic										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
POR	0	1	1	1	0	1	0	0		

ETUCK1 ETU Rate Division Frequency Register 1 (Read/Write)

US0CON2 (9EH) @ USMD0[1:0] = 00

Bit number	7	6	5	4	3	2	1	0
Bit	SCCK[4:0]				ETUCK [11:8]			
Mnemonic								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	1

Bit number	Bit Mnemonic	Description
7~4	SCCK[4:0]	SC Clock setting:
		SC Clock cycle T _{SC} = (SCCK[4:0]+1)*2 / f _{SYS}
ETUCK0[7:0]	ETUCK [11:0]	ETU setting
ETUCK1[3:0]		An ETU is (ETUCK [11:0] + 1) SC Clock, i.e.
		ETU cycle $T_{ETU} = T_{SC} * (ETUCK [11:0] + 1)$
		Note: The frequency range of smart card communication is between
		1MHz and 5MHz, so ETUCK [11:0] must be greater than 0x004

Page 185 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

SCDATA SC data resister(Read/Write) US0CON3 (9FH) @ USMD0[1:0] = 00

Bit number 5 4 3 2 1 0 Bit SCD[7:0] Mnemonic R/W R/W R/W R/W R/W R/W R/W R/W R/W POR 0 0 0 0 0 0 0 0

Bit number	Bit Mnemonic	Description
7~0	SCD[7:0]	Stores data sent and received by the SC interface

EGT SCExtended protection time register (Read/Write)

US0CON4(B6H) @ USMD0[1:0] = 00

00000111(D01	., <u> </u>	<u> </u>						
Bit number	7	6	5	4	3	2	1	0
Bit				EGT	[7:0]			
Mnemonic								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7~0	EGT [7:0]	SC extended protection time Expand the protection time to EGT [7:0] ETUS, namely: Actual extended protection time in SC communication $T_{EGT} = T_{ETU}^*$ EGT [7:0]

SCSTA0 SC Status register (Read/Write)

US0CON5 (B7H) @ SES=0

Bit number	7	6	5	4	3	2	1	0
Bit	SES	TC	RC	WTRT	TBUSY	RBUSY	WTER	FER
Mnemonic								
R/W	R/W	R/ Write	R/ Write	R	R	R	R/ Write	R/ Write
		the 1 to	the 1 to				the 1 to	the 1 to
		clear the	clear the				clear the	clear the
		0	0				0	0
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
7	SES	Status/error register switch control bit 0: US0CON5 (B7H) is the read/write status register 1: US0CON5 (B7H) is the read/write error register
6	TC	After sending, the hardware is set to 1 and the software must be cleared
5	RC	After receiving, hardware is set to 1 and software is required to clear
4	WTRT	Waiting for data to resend flag bits 0: no data retransmission waiting event occurs 1: data is being retransmitted
3	TBUSY	Data sending busy flag bit 0: Data transmission is idle 1: Data is being sent. The hardware sets the start bit of data to 1. The hardware clears the end bit of data and the end bit of data
2	RBUSY	Data receive busy flag bit 0: Data receiving is idle 1: Data is being received. When the start bit is received, the hardware sets the value to 1. When the stop bit is received, the hardware clears the value

Page 186 of 224 V1.0

POR

SC95F8523/8522/8521

0

Super High-Speed Low Power Consumption Flash MCU

1	WTER	Wait timeout flag bit 0: no wait timeout occurs 1: The hardware is set to 1 when the wait time exceeds 40,000 clock cycles between two consecutive characters in receive mode or when the reset response exceeds 40000
0	FER	Received frame error flag bit 0: The frame format is correct 1: the frame format is incorrect. No valid stop bit is received

SCSTA1 SC Read/write error register (read/write) US0CON5 (B7H) @ SES=1

Х

0

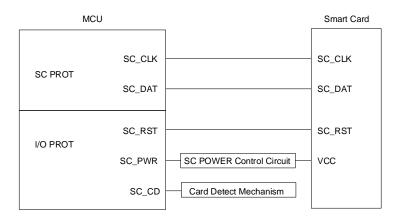
Bit number	7	6	5	4	3	2	1	0
Bit	SES	-	-	-	TPER	RPER	-	ROVF
Mnemonic								
R/W	R/W	-	-	-	R/ Write	R/ Write	-	R/ Write
					the 1 to	the 1 to		the 1 to
					clear the	clear the		clear the
					0	0		0

Bit number	Bit Mnemonic	Description
7	SES	Register switch control bit 0: US0CON5 (B7H) is the read/write status register 1: US0CON5 (B7H) is the read/write error register
3	TPER	Send data parity error flag bit 0: The sent data verification is normal 1: The sent data verification is error
2	RPER	Received data parity error flag bit 0: The received data verification is normal 1: The received data verification is error
0	ROVF	Receive overflow flag bit 0: no overflow error occurs 1: The receiving data buffer is not read and receives new data
6~4,1	-	Reversed

Page 187 of 224 V1.0

17.3 Operating Mode

17.3.1 Smartcard Description

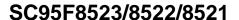

The smart card interface controller supports activation, cold reset, warm reset and release sequences. Activation, cold reset, warm reset and release sequences are described below.

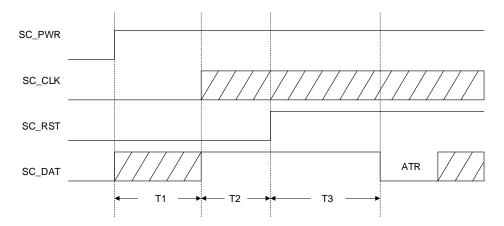
SC interface connection

- SC_CLK: SC Interface clock pin (MCU output)
- 2. SC DAT: SC Interface data pin (bidirectional)

The following signal ports can be customized using GPIO:

- 1. SC_RST: the reset pin of smart card, controlled by GPIO of MCU, with low effective reset signal
- 2. SC_PWR: The power switch control pin of the smart card is connected to GPIO of MCU. The high output of SC_PWR indicates that the smart card VCC is powered on
- 3. SC_CD: Smart card detection pin, connected to GPIO of MCU, to detect whether the card is inserted


SCInterface connection diagram


Activation and cold reset

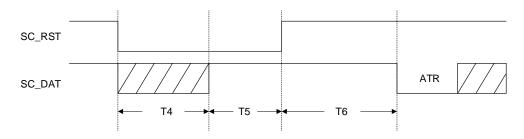
The timing requirements for activation and cold reset are as follows:

- 1. Set the output low level of SC_RST pin
- 2. The smart card power supply is enabled (set the SC_PWR output high) and the T1 cycle starts. Before the T1 cycle ends, set the SC port to receive mode and pull the SC_DAT port to a stable high level
- 3. Set CKEN (SCcon.6) to 1 to enable the SC_CLK output clock and enter the T2 cycle
- 4. After a period of time, set the SC_RST pin output height to end the T2 cycle and enter the T3 cycle
- 5. After a period of time, the smart card responds to the ATR signal, and the T3 cycle ends. The user can obtain the ATR data read by the SC interface through SCDATA

Page 188 of 224 V1.0

SC Activate and cold reset timing

period	time series
T1	The smartcard VCC is powered on and the SC_CLK output is enabled
T2	The stage before the SC_CLK signal is output to the SC_RST reset signal rising edge
T3	The SC_RST rises to the stage where the smart card responds to the ATR signal


Recommended timing relation (unit: SC Clock)

 teeenmonaea unimig relation (aniti ee electr)				
T1	T2	T3		
83.5	491	$400 \le T3 \le 40000$		
133	537			
165	569			
165	42060			

Warm reset

The timing requirements of warm reset are as follows:

- 1. Pull down SC_RST to enter the T4 cycle. Before the T4 cycle ends, pull the SC_DAT port to a stable high level
- 2. Enter the T5 cycle. After a period of time, set the SC_RST output high level to end the T5 cycle
- 3. Enter the T6 period and wait for the smartcard to answer
- 4. After a period of time, the smart card responds to the ATR signal, and the T6 cycle ends. The user can obtain ATR data read by the SC interface through SCDATA

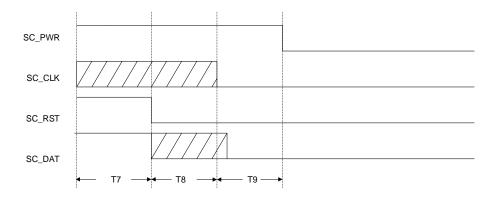
SC warm reset time series

period	time series
T4	The SC_RST reset signal is enabled to the SC_DAT setting phase
T5	SC_DAT is steadily pulled to the output stage of SC_RST rising edge
T6	SC RST reset signal ends when the smart card responds to the ATR signal

Recommended sequence relation (unit: SC Clock)

recommended sequence relation (unit: 50 block)							
T4	T5	T6					
81	483	$400 \le T6 \le 40000$					

Page 189 of 224 V1.0


Super High-Speed Low Power Consumption Flash MCU

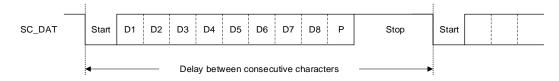
129	531
161	563
161	42106

Release

After communication, regardless of whether the result is normal or not, the SC interface must perform the following steps to release the smart card contact:

- 1. In T7, SC_DAT is idle. When SC_RST is lowered, the signal output is reset and the contact release sequence starts
- 2. Before the T8 cycle ends, set CKEN (SCcon.6) to 0 to stop SC_CLK signal output
- 3. After the SC_CLK signal output stops during the T9 cycle, pull down the SC_DAT
- 4. After waiting for a period of time, power off the smart card (set SC_PWR output low here).
- 5. Complete the release sequence.

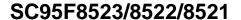
SC release sequence


period	time series
T7	SC_DAT is idle, and the smart card detects the reset signal
Т8	The SC_RST reset signal is enabled to the SC_CLK output stop phase
Т9	The output of SC_CLK and SC_DAT is stopped until the VCC of the smartcard is disabled

Recommended timing relation (unit: SC Clock)

 the state of the s		
T7	T8	Т9
97	83	87
145	131	135
177	163	167

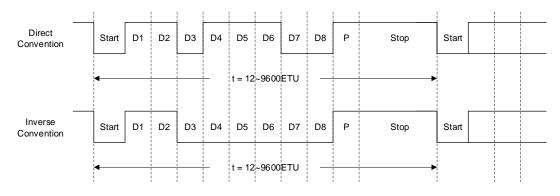
17.3.2 Smart card data transmission


The data format of the smart card interface consists of ten consecutive bits as follows:

SC data character

17.3.3 Initialization character TS

Page 190 of 224 V1.0

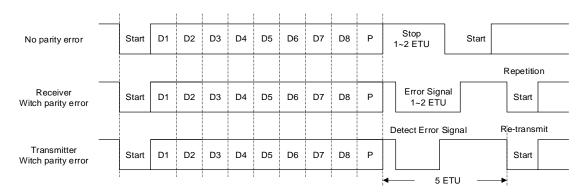


According to 7816-3, there are two possible modes for the initialization character TS in the smart card ATR information:

If the TS mode is 1101_1100, it is a forward convention. Decoded by forward convention, the bytes transmitted are equal to 0x3B.

If the TS mode is 1100_0000, it is the reverse convention. Decoded by reverse convention, the bytes transmitted are equal to 0x3F.

The user can set CONS (SCCON.2) to '0' or '1' and change the convention of the operation after receiving the TS from the ATR.



Initialization character

17.3.4 Error signals and character duplicates

The SC interface of SC95F852X complies with the error signal and character repetition rules in ISO7816-3 T= 0 mode:

- During normal communication, Stop bit is released as high level, and the duration of Stop bit provided by SC is set by ERS[1:0].
- In receiving mode, users can set TRER (SCCON.1) to select the processing method for a parity bit exception in SC receiving mode.
 - While TRER (SCCON.1)=0, SC will generate a transmission error interrupt to the CPU;
 - TRER (SCCON. 1)=1, the low level consistent with ETU cycle setting set by ERS[1:0] is sent at stop bit time when the checksum Error of the received data is detected, that is, Error signal, and the current sender shall retransmit this character.
- In sending mode, if the receiver is detected to lower SC_DAT at the stop bit time and the duration is consistent with the Error Signal set by ERS[1:0], SC retransmits this character without adding the extended protection time TEGT. The period from the Stop bit to the Start of the retransmission character is fixed to five ETUs, and the maximum number of multiple transmission times is three.

SC error signal

Page 191 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

17.3.5 Extended protection time

Extended protection duration The EGT is valid only when the SC interface sends packets. You can set the extended protection duration using EGT [7:0].

In the SC interface transmission state, there is an extended protection period (TEGT) before the Start of character transmission. TEGT is invalid during character retransmission.

SC Extended protection time

Page 192 of 224 V1.0

18 Analog-to-Digital Converter (ADC)

The SC95F852X is built with a 12-bit 11-channel high-precision 1M high-speed successive approximation ADC. The external 10-channel ADC and other functions of the IO port are multiplexed. The internal one can be connected to 1/4 VDD and used for measuring VDD voltage with internal 2.048V or 1.024V reference voltage.

The reference voltage of the ADC can be selected from two options:

- ① VDD pins (that is, directly internal VDD);
- 2) The internal Regulator output reference voltage 2.048V or 1.024V precision.

18.1 ADC-Related Registers

ADCCON (ADH) ADC Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ADCEN	ADCS	EOC/ADCIF		P	ADCIS[4: 0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	n

Bit number	Bit Mnemonic	Description
7	ADCEN	Power on ADC 0: Disable the ADC module power 1: Enable the ADC module power
6	ADCS	ADC start trigger control (ADC Start) Write "1" to this bit to start ADC conversion, that is, this bit is only the trigger signal of ADC conversion. This bit can only be written with 1 to be valid.
5	EOC /ADCIF	Conversion complete/ADC Interrupt Flag (End Of Conversion / ADC Interrupt Flag)

Page 193 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

		0: Conversion has not been completed					
		1: ADC conversion is complete. Need user software to clear					
		ADC conversion complete flag EOC: when the user sets ADCS to start conversion, this bit will be automatically cleared to 0 by the hardware; when the conversion is completed, this bit will be automatically set to 1 by the hardware;					
		ADC interrupt request flag ADCIF: This bit is also used as an interrupt request flag for ADC interrupt. If					
		This bit is also used as an interrupt request flag for ADC interrupt. If the user enables the ADC interrupt, the user must clear this bit by software after the ADC interrupt occurs.					
4~0	ADCIS[4: 0]	ADC Input Selector (ADC Input Selector)					
		00000: select AIN0 as ADC input					
		00001: select AIN1 as ADC input					
		00010: Use AIN2 as ADC input					
		00011: Choose AIN3 as ADC input					
		00100: Choose AIN4 as ADC input					
		00101: Choose AIN5 as ADC input					
		00110: select AIN6 as ADC input					
		00111: Choose AIN7 as ADC input					
		01000: select AIN8 as ADC input					
		01001: select AIN9 as ADC input					
		01010~11110: reserved					
		11111: ADC input is 1/4 V_{DD} , which can be used to measure power supply voltage					

ADCCFG2 (B5H) ADC Set Register 2 (read/write)

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	LOWSP[2: 0]			-	-
Read/	-	-	-	Read/	Read/	Read/	-	-

Page 194 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Write				Write	Write	Write		
Initial power-on value	х	х	х	0	0	0	х	х

Bit number	Bit Mnemonic	Description				
4~2	LOWSP[2: 0]	ADC sampling periods selection:				
		100: The sampling time is 3 system clocks, (about 100ns @fsys = 32MHz)				
		101: The sampling time is about 6 system clocks, (about 200ns @fs = 32MHz)				
		110: The sampling time is about 16 system clocks, (about 500ns @ fsys = 32MHz)				
		111: The sampling time is about 32 system clocks, (about 1000ns @ fsys = 32MHz)				
		Other: Reserved				
		Description: The total time from ADC sampling to completion of conversion TADC = sampling time + conversion time The ADC conversion time of the SC95F852X is fixed at 950ns.				
7~5, 1~0	-	Reserved				

ADCCFG0 (ABH) ADC Set Register 0 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Page 195 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR	0	0	0	0	0	0	0	0	

ADCCFG1 (ACH) ADC Set Register 1 (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	-	-	-	-	-	EAIN9	EAIN8
R/W	-	-	-	-	-	-	R/W	R/W
POR	х	x	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
0~7	EAINx (x=0~9)	ADC port setting register 0: Set AINx as IO port 1: Set AINx as ADC input and automatically remove the pull-up resistor.

OP_CTM1 (C2H@FFH) Customer Option Register 1(read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	VREFS[1: 0]		-	DISJTG	IAPS[1: 0]		OP_BL	
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
POR	n	n	х	n	n	n	n	n

Page 196 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
7~6	VREFS[1: 0]	Reference voltage selection (the initial value is transferred from Customer Option, the user can modify the setting)
		00: Set VREF of ADC to VDD;
		01: Set the VREF of ADC to the internal accurate 2.048V;
		10: Set the VREF of ADC to the internal accurate 1.024V;
		11: Reserved

ADCVL (AEH) ADC Conversion Value Register (low bit) (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	ADCV[3: 0]				-	-	-	-
R/W	R/W	R/W	R/W	R/W	-	-	-	-
POR	1	1	1	1	х	х	х	х

ADCVH (AFH) ADC Conversion Value Register (high bit) (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic		ADCV[11: 4]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	1	1	1	1	1	1	1	1

Page 197 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Bit number	Bit Mnemonic	Description
11~4	ADCV[11: 4]	The high 8-bit value of ADC conversion value
3~0	ADCV[3: 0]	Low 4 bits of ADC conversion value

IE (A8H) Interrupt Enable Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit number	Bit Mnemonic	Description
6	EADC	ADC interrupt enable control 0: Do not allow EOC/ADCIF to generate interrupts 1: Enable EOC/ADCIF to generate interrupt

IP (B8H) Interrupt Priority Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Page 198 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

POR x 0 0 0 0 0 0

Bit number	Bit Mnemonic	Description
6	IPADC	ADC interrupt priority selection 0: Set the interrupt priority of ADC to "low" 1: Set the interrupt priority of ADC to "High"

18.2 ADC Conversion Steps

The actual operation steps required for the user to perform ADC conversion are as follows:

- Set the ADC input pin; (set the bit corresponding to AINx as ADC input, usually the ADC pin will be fixed in advance);
- 2 Set ADC reference voltage Vref, set the frequency used for ADC conversion;
- (3) Enable the ADC module power supply;
- 4) Select ADC input channel; (set ADCIS bit, select ADC input channel);
- (5) Start ADCS and start conversion;
- Wait for EOC/ADCIF=1. If the ADC interrupt is enabled, the ADC interrupt will be generated. The user needs to clear the EOC/ADCIF flag by software;
- (7) Get 12-bit data from ADCVH and ADCVL, first high bit and then low bit, one conversion is completed;
- (8) If you do not change the input channel, repeat steps 5~7 for the next conversion.

Note: Before setting IE[6] (EADC), the user is better to clear EOC/ADCIF with software, and also clear the EOC/ADCIF when the ADC interrupt service routine is executed to avoid continuous ADC interrupts. .

Page 199 of 224 V1.0

19 Dual Mode Touch Circuit

The SC95F852X has a 23-channel dual mode capacitive touch circuit, which can be configured in high sensitivity mode or high reliability mode. Its features are as follows:

- 1. High sensitivity mode can be adapted to touch applications requiring high sensitivity, such as spacer button touch control and proximity induction
- 2. High reliability mode has a strong anti-interference ability, can pass 10V dynamic CS test
- 3. It can realize 23 touch control keys and derivative functions
- 4. High flexibility to develop software library support, low development difficulty
- 5. Automated debugging software support, intelligent development
- 6. The touch module can work in the low-power mode under the MCU Stop mode

19.1 Power Consumption Mode of Touch circuit

The SC95F852X allows touch scanning to be enabled in STOP Mode: this approach can reduce the overall power consumption of the MCU for touch applications with low power requirements.

Users can understand that the touch circuit of SC95F852X has two power consumption modes:

- 1. Normal operation mode
- 2. Low power operation mode

The two power consumption modes are defined as follows:

instructions	Normal operation mode	Low power operation mode
CPU	RUN (Normal mode)	Stop (STOP Mode)
Touch the circuit	RUN	RUN

19.2 Touch Mode

The SC95F852X dual-mode touch circuit provides two touch modes:

- 1. High sensitivity mode
- 2. High reliability mode

Users can select the touch mode and realize the required touch functions quickly and simply by using the touch button library file provided by SinOne (which can be downloaded from the official website of SinOne).

Users can select the most suitable touch mode for the current application through the information in the following table:

instructions	High sensitivity mode	High reliability mode			
characteristic s	① High anti-jamming ability, can pass 3V dynamic CS	① Super anti-jamming ability, can pass 10V dynamic CS			
	② High sensitivity	② Low power consumption			
Applicable application	 Common touch button application Space touch button application Proximity induction applications 	 requires the application of super anti- interference there are 10V dynamic CS requirements 			

Page 200 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	touch control applications with higher sensitivity requirements	for applications		
How to get into mode	Select the high sensitivity mode by loading the high sensitivity touch library into the project project	Select the high sensitivity mode by loading the high sensitivity touch library into the project project		
documentat ion	SinOne SC95F Series TouchKey MCU Application Guide Related chapters: • 2 SC95F8XXX _HIGHSENSITIVE_LIB_T1 Library • 3 SC95F8XXX _HIGHSENSITIVE_LIB_T2 Library	SinOne SC95F Series TouchKey MCU Application Guide Related chapters: 4 SC95F8XXX _HIGHRELIABILITY_LIB_T1 Library		
The correspondi ng library file	SC95F8XXX _HighSensitive_Lib_Tn_Vx.x.x.LIB	SC95F8XXX _HighReliability_Lib_Tn_Vx.x.x.LIB		
Matters needing attention	 The T1 library is used for spring type applications The T2 library is applied to the application of spacer type, and the number of keys is at least 3 or more 	For spring type applications only		
Choose instructions	It is generally recommended to use this high sensitivity mode for a better use experience.	There are only two situations where high reliability mode is recommended: ① Need to go through 10V dynamic CS ② Low power consumption current is required, and the current cannot be full in high sensitivity mode		

Page 201 of 224 V1.0

20 CRC Module

The SC95F852X has a built-in hardware CRC module. During the CRC execution calculation, the CPU keeps the program counter. After the CRC calculation is completed, the program counter continues to execute the following instructions.

The module has two calculation modes:

Hardware CRC mode 1: CRC operation processing on specified data:

Write the data needed for CRC calculation to the CRC data register CRCREG. When the CRC calculation result needs to be read, read it out from CRCDRn ($n = 0 \sim 3$).

CRC calculation for a single byte requires 8 system clocks, namely 0.25µs@32MHz.

Hardware CRC mode 2: CRC calculation processing for APROM:

It can be used to generate the 32-bit CRC value of APROM (ie 64K bytes Flash ROM) in real time. This value is compared with the theoretical value to monitor whether the content of the program area is correct. The theoretical value of CRC does not need to be calculated by the user. The burning software will automatically complete the calculation according to the loaded code and Code area setting items and write the 4 bytes CRC32 calculation result into the CRC result storage area through the programmer during burning. The specific operation For the method, please refer to "User Manual of SinOne Development Mass Production Tool".

Note: Mode two is invalid when hardware CRC is started in LDROM.

The hardware CRC parameter model of SC95F852X:

CRC algorithm name	CRC-32/MPEG-2
Polynomial formula	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$
Data width	32bit
Initial value	0xFFFFFFF
XOR value	0x0000000
Input value inversion	false
Output value inversion	false
LSB/MSB	MSB

CRC Precautions for use:

1. CRCDRn write data and read data are not the same;

Page 202 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

- 2. The CRC value calculated by the hardware is the 32-bit CRC check value of the data in the entire program area (note that the IAP area is not included here!). If there is a residual value after the user's last operation in the address unit, it will cause the CRC value to be inconsistent with the theoretical value. Therefore, it is recommended that the user erase the entire Flash ROM before programming the code to ensure that the CRC value is consistent with the theoretical value;
- 3. The hardware CRC calculation range does not include the IAP area;
- 4. Be sure to add at least 8 NOP instructions after the CRC start operation statement to ensure that the CRC calculation is completed;
- 5. When performing CRC calculation, it is necessary to disable the global interrupt EA, and then reopen the global interrupt after 8 NOPs.

20.1 CRC Check Operation Related Registers

OPERCON (EFH) Operation Control Register (read/write)

Bit number	7	6	5	4	3	2	1	0
Bit Mnemonic	OPERS	MD	-	-	-	-	CRCRST	CRCSTA
R/W	R/W	R/W	-	-	-	-	R/W	R/W
POR	0	0	х	х	х	х	0	0

Bit number	Bit Mnemonic	Description
1	CRCRST	CRCDR register reset (Q31~Q0) Write "1" to this bit to reset CRCDR to all 1s
0	CRCSTA	CRC hardware calculation start bit Write "1" to this bit to start a check sum calculation. This bit can only be written with 1 to be valid.

The read and write operations of the CRC data register CRCDRn (n = 0~3) are controlled by the two registers CRCINX and CRCREG. The specific position of each CRCRN is determined by CRCINX, as shown in the following table:

Page 203 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

Symbol	Address	Description		POR
CRCINX	FCH	CRC pointer	CRCINX[7: 0]	00000000b
CRCREG	FDH	CRC register	CRCREG[7: 0]	nnnnnnnb

Symbol	Address	Description	7	6	5	4	3	2	1	0
CRCDR3	03H@FDH	CRC Data register 3	Q31	Q30	Q29	Q28	Q27	Q26	Q25	Q24
CRCDR2	02H@FDH	CRC Data register 2	Q23	Q22	Q21	Q20	Q19	Q18	Q17	Q16
CRCDR1	01H@FDH	CRC Data register 1	Q15	Q14	Q13	Q12	Q11	Q10	Q9	Q8
CRCDR0	00H@FDH	CRC Data register 0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0

The related description of CRCDRn (n = 0~3) bits is as follows:

Bit number	Bit Mnemonic	Description
Bit31~0	Qx (x = 0~31)	Hardware CRC mode 1: CRC operations are performed on specified data: 1. Write the CRCRST and reset the CRCDR to all 1s 2. When CRCREG is written, the hardware automatically calculates the CRC result and continues to store it in the CRCDR 3. Read CRC calculation results immediately when necessary
		Hardware CRC mode 2: CRC operation on APROM: 4. When the CRCSTA starts, the CPU enters IDLE automatically

Page 204 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

5. Automatically reset CRCDR to all 1:
The hardware CRC calculation scope does not include the IAP area. The calculation range of CRC is divided into four types according to the value of IAPS[1:0]:
① IAPS[1:0]=00 (Flash ROM last 0K can be IAP) : 0000H ~ before last 0K
② IAPS[1:0]=01 (Flash ROM last 1K can IAP) : 0000H ~ before last 1K
③ IAPS[1:0]=10 (Flash ROM last 2K IAP) : 0000H ~ before last 2K
④ IAPS[1:0]=11 (Flash ROM all IAP) : all Flash ROM
6. The CPU automatically exits IDLE and the CRC calculation result can be read
Note: Write data and read data are not the same data.

When operating CRC-related SFR, the CRCINX register stores the address of the relevant CRCTION register, and the CRCREG register stores the corresponding value.

Before reading CRCREG, you need to set CRCINX and then read it. After each reading, CRCINX automatically adds 1 (0~3 cycles).

Hardware CRC mode 1 example: calculate CRC according to the data provided by the user

```
#include "intrins.h"

xdata unsigned int i;

xdata unsigned long int CRC_Result = 0x00; // Verification result

unsigned char a[16] = {0x00,0x01,0x02,0x03,0x04,0x05,

0x06,0x07,0x08,0x09,0x0A,

0x0B,0x0C,0x0D,0x0E,0x0F}; // The value to be verified

typedef struct

{
    char a3; // Highest address
    char a2; // Second highest address
    char a1; // Second lowest address
```

Page 205 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

```
char a0; // Lowest address
}Value_Typedef;
typedef union
Value_Typedef reg;
unsigned long int result; // Final Results
}Result_Typedef;
Result_Typedef CRC_Result;
  EA = 0;
                           // Disable the global interrupt
OPERCON |= 0x02;
                           // Start software inspection
                           // At least 8 NOP instructions
_nop_();
for(i=0; i<16; i++)
{
CRCREG = a[i];
                   // Calculated value
_nop_();
                   // At least 8 NOP instructions
_nop_();
_nop_();
_nop_();
```

Page 206 of 224 V1.0


```
_nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    _nop_();
    }
    CRCINX = 0x00;
    CRC_Result.reg.a0 = CRCREG;
    CRC_Result.reg.a1 = CRCREG;
    CRC_Result.reg.a2 = CRCREG;
    CRC_Result.reg.a3 = CRCREG;
    temp = CRC_Result.result; // Get results
                                      // Enable global interrupt
      EA = 1;
Hardware CRC mode 2 routines: generate APROM CRC in real time
       #include "intrins.h"
       typedef struct
       {
        char a3; // Highest address
        char a2; // Second highest address
```

char a1; // Second lowest address

unsigned long int result; //Final Results

char a0; // Lowest address

}Value_Typedef;

typedef union

Value_Typedef reg;

}Result_Typedef;

Page 207 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

```
unsigned long int temp = 0x00;
Result_Typedef CRC_Result;
 EA = 0;
                      // Disable global interrupts
OPERCON = 0x01;
                      // Start hardware verification
                      // At least 8 NOP instructions
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
CRCINX = 0x00;
CRC_Result.reg.a0 = CRCREG;
CRC_Result.reg.a1 = CRCREG;
CRC_Result.reg.a2 = CRCREG;
CRC_Result.reg.a3 = CRCREG;
 temp = CRC Result.result;
                              // Get results
 EA = 1;
                              // Enable global interrupt
```

Note: It is prohibited to write values other than the CRC register address to the CRCINX register! Otherwise it will cause abnormal system operation!

Page 208 of 224 V1.0

21 Electrical Characteristics

21.1 Absolute Maximum Ratings

Symbol	Symbol Parameter		Max Value	UNIT	Condition
VDD/VSS	DC supply voltage	-0.3	5.5	V	
Voltage ON any Pin	Input/output voltage of any pin	-0.3	V _{DD} +0.3	V	
TA	Operating temperature	-40	105	°C	
T _{STG}	Storage temperature	-55	125	°C	
lvdd	Current value flowing through VDD	-	200	mA	T _A = +25°C
I _{VSS} Current value flowing through VSS		-	200	mA	T _A = +25°C

21.2 Recommended Operating Conditions

Symbol	Parameter	Min Value	Max Value	UNIT	System Clock requency
V _{DD}	Operating Voltage	2.0	5.5	>	32MHz
Та	Operating temperature	-40	105	°C	

Page 209 of 224 V1.0

21.3 Flash ROM Characteristics

Symbol	Parameter	Min Value	Typical Values	Max Value	UNIT	Condition
N _{END}	Wipe the number	100,000	-	-	Cycle s	
T _{DR}	Data Retention Time	100	-	-	Years	T _A = +25°C
Ts-Erase	Sector Erase Time	-	5	-	ms	T _A = +25°C
T _{All-Erase}	32K Flash ROM Erase Time	-	25	-	ms	T _A = +25°C
Twrite	Byte Program Time	-	30	-	μs	T _A = +25°C

21.4 LVR Characteristics

 $(V_{DD} = 5V, T_A = +25^{\circ}C, Unless otherwise indicated)$

Symbol	Parameter	Min Value	Typical	Max Value	Unit	Conditions
V _{LVR1}	LVR Threshold voltage 4.3V	4.22	4.30	4.38	V	LVRS[1: 0] = 11
V _{LVR2}	LVR Threshold voltage 3.7V	3.62	3.70	3.77	V	LVRS[1: 0] = 10
V _{LVR3}	LVR Threshold voltage 2.9V	2.84	2.90	2.95	V	LVRS[1: 0] = 01
V _{LVR4}	LVR Threshold voltage 1.9V	1.86	1.90	1.93	V	LVRS[1: 0] = 00

Page 210 of 224 V1.0

21.5 DC Characteristics

 $(V_{DD} = 5V, T_A = +25^{\circ}C, Unless otherwise specified)$

Symbol	Parameter	Minimum	Typical value	Maximum	Unit	Test Conditions
Current						
l _{op1}	Operating current	-	4.5	-	mA	fsys=32MHz
l _{op2}	Operating current	-	3	-	mA	fsys=16MHz
І ор3	Operating current	-	2	-	mA	fsys=8MHz
l _{op4}	Operating current	-	1.6	-	mA	fsys=4MHz
I _{pd1}	Stand-by current (Power Down Mode)	-	4	8	μΑ	
l _{IDL1}	Stand-by current (IDLE Mode)	-	2	-	mA	fsys=32MHz
Івтм	Base Timer Operating current	-	6	10	μА	BTMFS[3: 0]= 1000 Generate an interrupt every 4.0 seconds
Іwbт	WDT current	-	6	10	μΑ	WDTCKS[2: 0]= 000 WDT overflow time 500ms
I _{TK1}	TK operating current	-	0.4	0.6	mA	

Page 211 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

	(Highly reliable)								
I _{TK2}	TK operating current (High sensitivity)	-	0.8	1.2	mA				
IO port cha	IO port characteristics								
V _{IH1}	Input high voltage	0.7V _{DD}	-	V _{DD} +0.3	V				
VIL1	Input low voltage	-0.3	-	0.3V _{DD}	V				
V _{IH2}	Input high voltage	0.8V _{DD}	-	V _{DD}	V	Schmitt trigger input:			
V _{IL2}	Input low voltage	-0.2	-	0.2V _{DD}	٧	RST/tCK/SCK			
l _{OL1}	Output low current	-	29	-	mA	V _{Pin} =0.4V			
I _{OL2}	Output low current	-	50	-	mA	V _{Pin} =0.8V			
Іон1	Output high current P05/P20	-	20	-	mA	V _{Pin} =4.3V Pxyz=0,lo _H level 0			
	Output high current (except P05/P20)	-	10	-	mA	V _{Pin} =4.3V Pxyz=0,l _{OH} level 0			
	Output high current	-	7	-	mA	V _{Pin} =4.3V Pxyz=1,I _{OH} level 1			
	Output high current	-	5	-	mA	V _{Pin} =4.3V Pxyz=2,l _{OH} level 2			
	Output high current	-	2.5	-	mA	V _{Pin} =4.3V Pxyz=3,I _{OH} level 3			
I _{OH2}	Output high current P05/P20	-	8	-	mA	V _{Pin} =4.7V			

Page 212 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

						Pxyz=0,Iон level 0
	Output high current (except P05/P20)		4	-	mA	V _{Pin} =4.7V Pxyz=0,I _{OH} level 0
	Output high current	-	3	-	mA	V _{Pin} =4.7V Pxyz=1,I _{OH} level 1
	Output high current	-	2	-	mA	V _{Pin} =4.7V Pxyz=2,I _{OH} level 2
	Output high current	-	1	-	mA	V _{Pin} =4.7V Pxyz=3,I _{OH} level 3
R _{PH1}	Pull-up resistor	-	30	-	kΩ	
ADC Intern	al reference for reference voltage	e 2.048V				
V _{REF1}	Internal reference 2.048V voltage output	2.028	2.048	2.068	V	
ADC Intern	al reference for reference voltage	e 1.024V				
Vref2	Internal reference 1.024V voltage output	1.014	1.024	1.034	V	

$(V_{DD} = 3.3V, T_A = +25$ °C, Unless otherwise specified)

Symbol	Parameters	Min Value	Typical value	Max Value	Unit	Test condition
Current						
l _{op5}	Operating current	-	4.5	-	mA	f _{SYS} =32MHz

Page 213 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

-						-
l _{op6}	Operating current	-	3	-	mA	fsys=16MHz
I _{op7}	Operating current	-	2	-	mA	f _{SYS} =8MHz
I _{op8}	Operating current		1.5	-	mA	f _{SYS} =4MHz
I _{pd2}	Stand-by current(Power Down Mode)	-	4	8	uA	
I _{IDL2}	Stand-by current (IDLE Mode)	-	2.5	-	mA	fsys=32MHz
I _{TK} 3	TK operating current (Highly reliable)	1	0.3	0.5	mA	
I _{TK} 4	TK operating current (High sensitivity)	-	0.7	1.0	mA	
IO port cha	racteristics					
V _{IH3}	Input high voltage	0.7V _{DD}	-	V _{DD} +0.3	V	
V _{IL3}	Input low voltage	-0.3	-	0.3V _{DD}	V	
V _{IH4}	Input high voltage	0.8V _{DD}	-	V _{DD}	V	Schmitt trigger input:
V _{IL4}	Input low voltage	-0.2	-	0.2V _{DD}	V	RST/tCK/SCK
I _{OL3}	Output low current	-	20	-	mA	V _{Pin} =0.4V
I _{OL4}	Output low current	-	35	-	mA	V _{Pin} =0.8V
І _{ОНЗ}	Output high current (except P05/P20)	-	3	-	mA	V _{Pin} =3.0V
І ОН4	Output high current P05/P20	-	6	-	mA	V _{Pin} =3.0V

Page 214 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

R _{PH2}	Pull-up resistor	-	55	-	kΩ	
V _{REF3}	Internal reference 2.048V voltage output	2.028	2.048	2.068	V	
Vref4	Internal reference 1.024V voltage output	1.014	1.024	1.034	V	

21.6 AC Characteristics

 $(V_{DD} = 2.0 V \sim 5.5 V, T_A = 25 ^{\circ}C$, Unless otherwise indicated)

Symbol	Parameters	Min Value	Typical Value	Max Value	Unit	Test condition
Tosc	External 32.768kHz oscillator start-up time	-	-	1	S	External 32.768kHz crystal oscillator
T _{POR}	Power On Reset time	-	15	-	ms	
T _{PDW}	Power Down mode wake-up time	-	65	130	μs	
T _{Reset}	Reset pulse width	18	ı	-	μs	Low level valid
fHRC1	RC oscillation stability	31.68	32	32.32	MHz	T _A =-20~85°C
fHRC2	RC oscillation stability	31.36	32	32.64	MHz	T _A =-40~105 °C

21.7 ADC Characteristics

(T_A = 25°C,Unless otherwise indicated)

Symbol Parameters Min Value Typical Max Value Unit Conditio

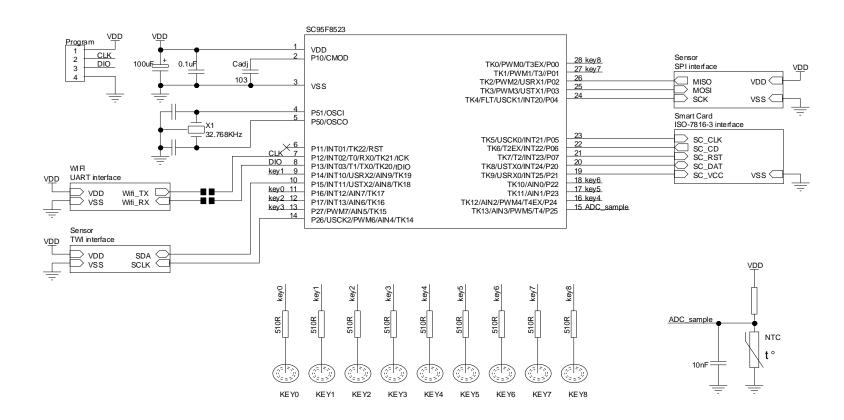
Page 215 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

1						
V _{AD1}	Supply voltage 1	2.7	5.0	5.5	V	Vref = 2.048V
V _{AD2}	Supply voltage 2	2.4	5.0	5.5	V	Vref = 1.024V
						or
						Vref = V _{DD}
N _R	Precision	-	12	-	bit	GND≤Vain≤Vdd
Vain	ADC input voltage	GND	-	V _{DD}	V	
Rain	ADC input resistance	1	•		MΩ	V _{IN} =5V
I _{ADC1}	ADC conversion current 1	-	-	2	mA	ADC module open
						V _{DD} =5V
I _{ADC2}	ADC conversion current 2	-	-	1.8	mA	ADC module open
						V _{DD} =3.3V
DNL	Differential Non-Linearity	-	ı	±3	LSB	
INL	Integral Non-Linearity	-	-	±3	LSB	
Ez	Offset error	-	±3	-	LSB	V _{DD} =5V V _{REF} =5V
E _F	Full scale error	-	±1	-	LSB	
Ead	Absolute Accuracy	-	±3	-	LSB	
T _{ADC1}	ADC conversion time 1	-	1.1	1.4	μs	fsys=32MHz LOWSP[2: 0] = 100
T _{ADC2}	ADC conversion time 2	-	1.2	1.5	μs	fsys=32MHz LOWSP[2: 0] = 101

Page 216 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

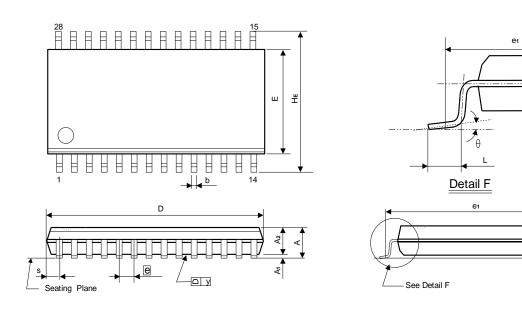

T _{ADC3}	ADC conversion time 3	-	1.5	1.9	μs	fsys=32MHz LOWSP[2: 0] = 110
T _{ADC4}	ADC conversion time 4	-	2.0	2.6	μs	fsys=32MHz LOWSP[2: 0] = 111

Page 217 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

22 Application Circuit

Page 218 of 224 V1.0

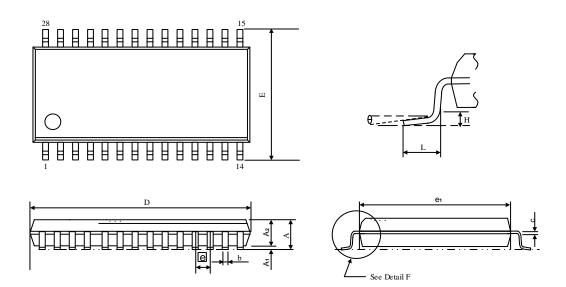

http://www.socmcu.com

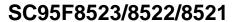
23 Package Information


SC95F8523M28U

SOP28L(300mil) Overall Dimensions Unit: mm

Cumbal	mm		
Symbol	Min Value	Typical Value	Min Value
Α	2.40	2.56	2.65
A1	0.100	0.200	0.300
A 2	2.240	2.340	2.440
b	0.39		0.48
С		0.254(BSC)	
D	17.80	18.00	18.20
Е	7.30	7.50	7.70
HE	10.100	10.300	10.500
е		1.270(BSC)	
L	0.7	0.85	1.0
LE	1.3	1.4	1.5
θ	0°	-	8°

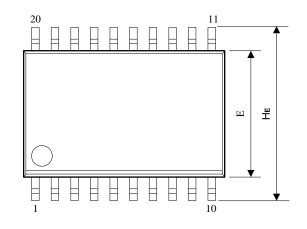

Page 219 of 224 V1.0

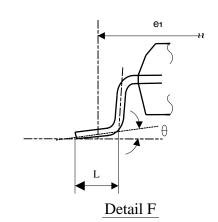

SC95F8523X28U

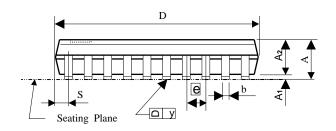
TSSOP28L Overall Dimensions Unit: mm

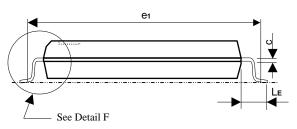
Comple ed	mm		
Symbol	Min Value	Typical Value	Min Value
Α	-	-	1.200
A1	0.050	-	0.150
A 2	0.800	-	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	9.600	-	9.800
Е	6.250	-	6.550
e1	4.300	-	4.500
е		0.65(BSC)	
L	-	-	1.0
θ	0°	-	8°
Н	0.05	-	0.25

Page 220 of 224 V1.0



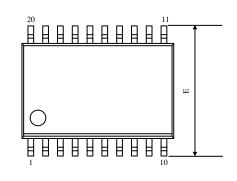


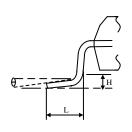

SC95F8522M20U

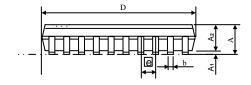

SOP20L Overall Dimensions

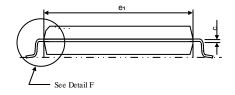


Cumbal	mm		
Symbol	Min Value	Typical Value	Min Value
Α	2.40	2.56	2.65
A 1	0.100	0.200	0.300
A 2	2.240	2.340	2.440
b	0.35	-	0.47
С	0.25		0.31
D	12.60	12.80	13.00
Е	7.30	7.50	7.70
HE	10.100	10.300	10.500
е		1.27(BSC)	
L	0.700	0.850	1.000
LE	1.30	1.40	1.50
θ	0°	-	8°


Page 221 of 224 V1.0





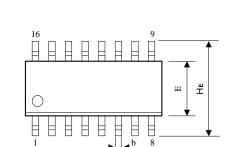

SC95F8522X20U

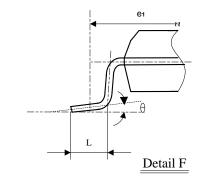
TSSOP20L Overall Dimensions Unit: mm

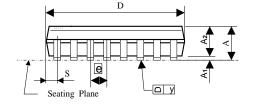


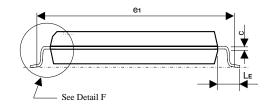
Cumbal	mm		
Symbol	Min Value	Typical Value	Min Value
Α	-	-	1.200
A1	0.050	-	0.150
A 2	0.800	-	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	6.400	-	6.600
Е	6.20	-	6.60
e1	4.300	-	4.500
е		0.65(BSC)	
L	-	-	1.00
θ	0°	-	8°
Н	0.05		0.15

Page 222 of 224 V1.0






Unit: mm


SC95F8521M16U

SOP16L(150mil) Overall Dimensions

Cumbal	mm		
Symbol	Min Value	Typical Value	Min Value
Α	1.500	1.625	1.750
A1	0.050	0.1375	0.225
A 2	1.30	1.45	1.55
b	0.38	0.43	0.48
С	0.20	0.23	0.26
D	9.70	9.90	10.10
Е	3.70	3.90	4.10
HE	5.80	6.00	6.20
е	1.27(BSC)		
L	0.50	0.65	0.80
LE	0.95	1.05	1.15
θ	0°	-	8°

Page 223 of 224 V1.0

Super High-Speed Low Power Consumption Flash MCU

24 Revision History

Revision	Changes	Date
V1.0	Initial Release.	July 2021

Page 224 of 224 V1.0